A REAL-TIME AFM STUDY ON CRYSTAL NUCLEATION AND GROWTH IN NANODROPLETS OF ISOTACTIC POLYPROPYLENE

Jun-chai Zhao Bo Xing Zheng Peng Jian-min Zhang

Citation:  Jun-chai Zhao, Bo Xing, Zheng Peng, Jian-min Zhang. A REAL-TIME AFM STUDY ON CRYSTAL NUCLEATION AND GROWTH IN NANODROPLETS OF ISOTACTIC POLYPROPYLENE[J]. Chinese Journal of Polymer Science, 2013, 31(9): 1310-1320. doi: 10.1007/s10118-013-1330-8 shu

A REAL-TIME AFM STUDY ON CRYSTAL NUCLEATION AND GROWTH IN NANODROPLETS OF ISOTACTIC POLYPROPYLENE

    通讯作者: Jun-chai Zhao,
  • 基金项目:

    This work was financially supported by the National Natural Science Foundation of China (No. 20804051) and the Natural Science Foundation of Hebei Province (Nos. B2010001055, E2011210059).

摘要: Isotactic polypropylene (iPP) nanodroplets were prepared by using the classical droplet method in this study. The formation of nanodroplets allowed the controlled observation of polymer nucleation as well as access to crystal growth at exceptionally high supercooling in iPP. Three cases including the heterogeneous nucleation and fast crystallization in iPP droplets, the formation of multiple independent homogeneous nuclei within a single droplet and a single nucleus within a single droplet were detected by using atomic force microscopy (AFM) during gradually cooling after remelting the nanodroplets. Moreover, it is found that when the volume of droplet is larger than the value of ca. 130000 nm3, the first case was observed. Otherwise, the latter two cases appeared. The temperature at which the onset of nucleation was observed in individual droplets was found to be mainly dependent on height of the droplets when the size scale of the droplet is comparable to the size of the critical nucleus in at least one dimension, which indicates the nucleation behavior under confinement.

English


    1. [1]

      Arnal, M., Matos, M., Morales, R., Santana, O. and Muller, A., Macromol. Chem. Phys., 1998, 199: 2275[2]Tol, R., Mathot, V. and Groeninckx, G., Polymer, 2005, 46: 383[3]Barham, P., Jarvis, D[J].and Keller, A., J. Polym. Sci. Polym. Phys. Ed.1982, 20:1733-[4]Nojima, S., Ohguma, Y., Namiki, S., Ishizone, T. and Yamaguchi, K., Macromolecules, 2008, 41: 1915[5]Cai, T., Qian, Y., Ma, Y., Ren, Y. and Hu, W., Macromolecules, 2009, 42: 3381[6]Woo, E., Huh, J[J]., Jeong, Y. and Shin, K., Phys. Rev. Lett.2007, 98:136103-[7]Duran, H., Steinhart, M[J]., Butt, H. J. and Floudas, G., Nano Lett.2011, 11:1671-[8]Massa, M., Carvalho, J[J].and Dalnoki-Veress, K., Eur. Phys. J. E.2003, 12:111-[9]Massa, M. and Dalnoki-Veress, K[J]., Phys. Rev. Lett.2004, 92:255509-[10]Massa, M., Lee, M[J].and Dalnoki-Veress, K., J. Polym. Sci., Part B: Polym. Phys.2005, 43:3438-[11]Massa, M., Carvalho, J[J].and Dalnoki-Veress, K., Phys. Rev.Lett.2006, 97:247802-[12]Hu, W., Cai, T., Ma, Y. Hobbs, J., Farrance, O. and Reiter, G., Faraday Discuss., 2009, 143: 129[13]Carvalho, J. and Dalnoki-Veress, K[J]., Phys. Rev. Lett.2010, 105:237801-[14]Kailas, L., Vasilev, C., Audinot, J.N., Migeon, H.-N. and Hobbs, J. K., Macromolecules, 2007, 40: 7223[15]Carvalho, J.L. and Dalnoki-Veress, K[J]., Eur. Phys. J. E.2011, 34:6-[16]Zhao, J.C., Qiu, J[J]., Niu, Y.H. and Wang, Z.G., J. Polym. Sci. Part B: Polym. Phys.2009, 47:1703-[17]Arnal, M.L., Müller, A[J].J., Maiti, P. and Hikosaka, M., Macromol. Chem. Phys.2000, 201:2493-3.0.CO;2-0' target='_blank'>[18]Jin, Y., Hiltner, A[J]., Baer, E., Masirek, R., Piorkowska, E. and Galeski, A., J. Polym. Sci. Part B: Polym. Phys.2006, 44:1795-[19]Wunderlich, B., “Macromolecular physics”, Academic press, New York, 1976, vol 2, p. 13[20]Zia, Q., Androsch, R., Radusch, H.J. and Piccarolo, S., Polymer, 2006, 47: 8163

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  671
  • HTML全文浏览量:  40
文章相关
  • 发布日期:  2013-09-05
  • 收稿日期:  2013-05-31
  • 修回日期:  2013-06-12
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章