自然和人工光合作用水裂解催化剂

张纯喜 陈长辉 常文艳 董红星

引用本文: 张纯喜, 陈长辉, 常文艳, 董红星. 自然和人工光合作用水裂解催化剂[J]. 化学通报, 2016, 79(1): 4-8. shu
Citation:  Zhang Chunxi, Chen Changhui, Chang Wenyan, Dong Hongxing. Catalysts for Water-Splitting Reaction in Natural and Artificial Photosynthesis[J]. Chemistry, 2016, 79(1): 4-8. shu

自然和人工光合作用水裂解催化剂

  • 基金项目:

    国家自然科学基金项目(31070216,91427303)资助 

摘要: 近年生物光合作用水裂解催化中心的结构研究取得重要进展,为人工模拟光合作用水裂解研究提供了理想的蓝图。人工模拟生物水裂解催化中心、制备高效和廉价的人工水裂解催化剂、获得电能和(或)氢能被认为是解决人类所面临的能源危机和环境污染问题的理想途径。这方面的研究具有重要科学意义和应用价值,同时也是广受关注的重大科学前沿。本文对最近生物水裂解催化中心和其人工模拟研究进展进行了评述。

English

  • 
    1. [1] J R Shen. Ann. Rev. Plant Biol., 2015, 66:23~48.[1] J R Shen. Ann. Rev. Plant Biol., 2015, 66:23~48.

    2. [2] J Yano, V Yachandra. Chem. Rev., 2014, 114:4175~4205.[2] J Yano, V Yachandra. Chem. Rev., 2014, 114:4175~4205.

    3. [3] M D Kärkäs, O Verho, E V Johnston et al. Chem. Rev., 2014, 114:11863~12001.[3] M D Kärkäs, O Verho, E V Johnston et al. Chem. Rev., 2014, 114:11863~12001.

    4. [4] J Barber. Chem. Soc. Rev., 2009, 38:185~196.[4] J Barber. Chem. Soc. Rev., 2009, 38:185~196.

    5. [5] J M Peloquin, R D Britt. Biochim. Biophys. Acta, 2001, 1503:96~111.[5] J M Peloquin, R D Britt. Biochim. Biophys. Acta, 2001, 1503:96~111.

    6. [6] H Dau, A Grundmeier, P Loja et al. Phil. Transac. R. Soc. Lond. B, 2008, 363:1237~1244.[6] H Dau, A Grundmeier, P Loja et al. Phil. Transac. R. Soc. Lond. B, 2008, 363:1237~1244.

    7. [7] P E M Siegbahn. Biochim. Biophys. Acta, 2013, 1827:1003~1019.[7] P E M Siegbahn. Biochim. Biophys. Acta, 2013, 1827:1003~1019.

    8. [8] C Tommos, G T Babcock. Acc. Chem. Res., 1998, 31:18~25.[8] C Tommos, G T Babcock. Acc. Chem. Res., 1998, 31:18~25.

    9. [9] C Zhang, J Pan, L Li et al. Chin. Sci. Bull., 1999, 44:2209~2215.[9] C Zhang, J Pan, L Li et al. Chin. Sci. Bull., 1999, 44:2209~2215.

    10. [10] A Zouni, H T Witt, J Kern et al. Nature, 2001, 409:739~743.[10] A Zouni, H T Witt, J Kern et al. Nature, 2001, 409:739~743.

    11. [11] N Kamiya, J R Shen. PNAS, 2003, 100:98~103.[11] N Kamiya, J R Shen. PNAS, 2003, 100:98~103.

    12. [12] K N Ferreira, T M Iverson, K Maghlaoui et al. Science, 2004, 303:1831~1838.[12] K N Ferreira, T M Iverson, K Maghlaoui et al. Science, 2004, 303:1831~1838.

    13. [13] B Loll, J Kern, W Saenger et al. Nature, 2005, 438:1040~1044.[13] B Loll, J Kern, W Saenger et al. Nature, 2005, 438:1040~1044.

    14. [14] J Yano, J Kern, K Sauer et al. Science, 2006, 314:821~825.[14] J Yano, J Kern, K Sauer et al. Science, 2006, 314:821~825.

    15. [15] A Guskov, J Kern, A Gabdulkhakov et al. Nat. Struct. Mol. Biol., 2009, 16:334~342.[15] A Guskov, J Kern, A Gabdulkhakov et al. Nat. Struct. Mol. Biol., 2009, 16:334~342.

    16. [16] J Yano, J Kern, K D Irrgang et al. PNAS, 2005, 102:12047~12052.[16] J Yano, J Kern, K D Irrgang et al. PNAS, 2005, 102:12047~12052.

    17. [17] M Grabolle, M Haumann, C Müller et al. J. Biol. Chem., 2006, 281:4580~4588.[17] M Grabolle, M Haumann, C Müller et al. J. Biol. Chem., 2006, 281:4580~4588.

    18. [18] Y Umena, K Kawakami, J R Shen et al. Nature, 2011, 473:55~60.[18] Y Umena, K Kawakami, J R Shen et al. Nature, 2011, 473:55~60.

    19. [19] M Suga, F Akita, K Hirata et al. Nature, 2015, 517:99~103.[19] M Suga, F Akita, K Hirata et al. Nature, 2015, 517:99~103.

    20. [20] F H M Koua, Y Umena, K Kawakami et al. PNAS, 2013, 110:3889~3894.[20] F H M Koua, Y Umena, K Kawakami et al. PNAS, 2013, 110:3889~3894.

    21. [21] C F Yocum. Coord. Chem. Rev., 2008, 252:296~305.[21] C F Yocum. Coord. Chem. Rev., 2008, 252:296~305.

    22. [22] N Cox, D A Pantazis, F Neese et al. Acc. Chem. Res., 2013, 46:1588~1596.[22] N Cox, D A Pantazis, F Neese et al. Acc. Chem. Res., 2013, 46:1588~1596.

    23. [23] H Dau, M Haumann. Coord. Chem. Rev., 2008, 252:273~295.[23] H Dau, M Haumann. Coord. Chem. Rev., 2008, 252:273~295.

    24. [24] H Nilsson, F Rappaport, A Boussac et al. Nat. Commun., 2014, 5:4305.[24] H Nilsson, F Rappaport, A Boussac et al. Nat. Commun., 2014, 5:4305.

    25. [25] N Cox, J Messinger. Biochim. Biophys. Acta, 2013, 1827:1020~1030.[25] N Cox, J Messinger. Biochim. Biophys. Acta, 2013, 1827:1020~1030.

    26. [26] L Wang, C Zhang, J Zhao. J. Photochem. Photobiol. B, 2014, 138:249~255.[26] L Wang, C Zhang, J Zhao. J. Photochem. Photobiol. B, 2014, 138:249~255.

    27. [27] Y Ren, C Zhang, J Zhao. Biochim. Biophys. Acta, 2010, 1797:1421~1427.[27] Y Ren, C Zhang, J Zhao. Biochim. Biophys. Acta, 2010, 1797:1421~1427.

    28. [28] S Mukhopadhyay, S K Mandal, S Bhaduri et al. Chem. Rev., 2004, 104:3981~4026.[28] S Mukhopadhyay, S K Mandal, S Bhaduri et al. Chem. Rev., 2004, 104:3981~4026.

    29. [29] E Y Tsui, J S Kanady, T Agapie. Inorg. Chem., 2013, 52:13833~13848.[29] E Y Tsui, J S Kanady, T Agapie. Inorg. Chem., 2013, 52:13833~13848.

    30. [30] C Zhang. Sci. Chin. Life Sci., 2015, 58:816~817.[30] C Zhang. Sci. Chin. Life Sci., 2015, 58:816~817.

    31. [31] L Duan, F Bozoglian, S Mandal et al. Nat. Chem., 2012, 4:418~423.[31] L Duan, F Bozoglian, S Mandal et al. Nat. Chem., 2012, 4:418~423.

    32. [32] L Wang, L Duan, Y Wang et al. Chem. Commun., 2014, 50:12947~12950.[32] L Wang, L Duan, Y Wang et al. Chem. Commun., 2014, 50:12947~12950.

    33. [33] C C L McCrory, S Jung, I M Ferrer et al. J. Am. Chem. Soc., 2015, 137:4347~4357.[33] C C L McCrory, S Jung, I M Ferrer et al. J. Am. Chem. Soc., 2015, 137:4347~4357.

    34. [34] J P McEvoy, G W Brudvig. Chem. Rev., 2006, 106:4455~4483.[34] J P McEvoy, G W Brudvig. Chem. Rev., 2006, 106:4455~4483.

    35. [35] G C Dismukes, R Brimblecombe, G A N Felton et al. Acc. Chem. Res., 2009, 42:1935~1943.[35] G C Dismukes, R Brimblecombe, G A N Felton et al. Acc. Chem. Res., 2009, 42:1935~1943.

    36. [36] J S Kanady, E Y Tsui, M W Day et al. Science, 2011, 333:733~736.[36] J S Kanady, E Y Tsui, M W Day et al. Science, 2011, 333:733~736.

    37. [37] E Y Tsui, T Agapie. PNAS, 2013, 110:10084~10088.[37] E Y Tsui, T Agapie. PNAS, 2013, 110:10084~10088.

    38. [38] S Mukherjee, J A Stull, J Yano et al. PNAS, 2012, 109:2257~2262.[38] S Mukherjee, J A Stull, J Yano et al. PNAS, 2012, 109:2257~2262.

    39. [39] C Chen, C Zhang, H Dong et al. Chem. Commun., 2014, 50:9263~9265.[39] C Chen, C Zhang, H Dong et al. Chem. Commun., 2014, 50:9263~9265.

    40. [40] C Chen, C Zhang, H Dong et al. Dalton Transac., 2015, 44:4431~4435.[40] C Chen, C Zhang, H Dong et al. Dalton Transac., 2015, 44:4431~4435.

    41. [41] C Zhang. Biochim. Biophys. Acta, 2007, 1767:493~499.[41] C Zhang. Biochim. Biophys. Acta, 2007, 1767:493~499.

    42. [42] C Zhang, S Styring. Biochemistry, 2003, 42:8066~8076.[42] C Zhang, S Styring. Biochemistry, 2003, 42:8066~8076.

    43. [43] C Zhang, C Chen, H Dong et al. Science, 2015, 348:690~693.[43] C Zhang, C Chen, H Dong et al. Science, 2015, 348:690~693.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  0
  • HTML全文浏览量:  0
文章相关
  • 收稿日期:  2015-08-18
  • 网络出版日期:  2015-09-02
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章