由不同镍盐前体制备高分散Ni/SBA-15催化剂:活化氛围的影响

任世彪 沈周 张萍 王知彩 雷智平 潘春秀 康士刚 水恒福

引用本文: 任世彪, 沈周, 张萍, 王知彩, 雷智平, 潘春秀, 康士刚, 水恒福. 由不同镍盐前体制备高分散Ni/SBA-15催化剂:活化氛围的影响[J]. 燃料化学学报, 2014, 42(5): 591-596. shu
Citation:  REN Shi-biao, SHEN Zhou, ZHANG Ping, WANG Zhi-cai, LEI Zhi-ping, PAN Chun-xiu, KANG Shi-gang, SHUI Heng-fu. Highly dispersed Ni/SBA-15 catalysts prepared with different nickel salts as nickel precursors:Effects of activation atmospheres[J]. Journal of Fuel Chemistry and Technology, 2014, 42(5): 591-596. shu

由不同镍盐前体制备高分散Ni/SBA-15催化剂:活化氛围的影响

  • 基金项目:

    Supported by the National Natural Science Foundation of China (U1361125, U1261208, 21176001, 51174254) (U1361125, U1261208, 21176001, 51174254)

    the Provincial Innovative Group for Processing & Clean Utilization of Coal Resource 

    the Innovative Research Team of Anhui University of Technology. 

摘要: 以硝酸镍和乙酸镍为镍前体,用浸渍法分别在空气和氢气氛围活化制得系列Ni/SBA-15催化剂,通过XRD、H2-TPD、N2物理吸附和在线质谱等物理化学手段对催化剂进行了表征,并结合微型高压反应釜萘加氢反应,评价了催化剂的加氢性能。结果表明,氢气氛围活化对硝酸镍为镍前体所制Ni/SBA-15催化剂的镍分散度和活性有显著促进作用,而空气氛围活化对乙酸镍为镍前体所制催化剂有明显促进作用。根据催化剂前体在不同氛围活化时的热分解产物,提出了活化氛围对不同镍前体制得Ni/SBA-15催化剂所产生的作用机理。

English

  • 
    1. [1] STANISLAUS A, COOPER B H. Aromatic hydrogenation catalysis: A review[J]. Catal Rev Sci Eng, 1994, 36(1): 75-123.[1] STANISLAUS A, COOPER B H. Aromatic hydrogenation catalysis: A review[J]. Catal Rev Sci Eng, 1994, 36(1): 75-123.

    2. [2] WEISSERMEL K, ARPLE H J. Industrial organic chemistry[M]. 4th ed. Weinheim: Wiley-VCH, 2003.[2] WEISSERMEL K, ARPLE H J. Industrial organic chemistry[M]. 4th ed. Weinheim: Wiley-VCH, 2003.

    3. [3] DILLEN A J, TERÖRDE R M, LENSVELD D J. Synthesis of supported catalysts by impregnation and drying using aqueous chelated metal complexes[J]. J Catal, 2003, 216(1): 257-264.[3] DILLEN A J, TERÖRDE R M, LENSVELD D J. Synthesis of supported catalysts by impregnation and drying using aqueous chelated metal complexes[J]. J Catal, 2003, 216(1): 257-264.

    4. [4] LI F, YI X D, FANG W P. Effect of organic nickel precursor on the reduction performance and hydrogenation activity of Ni/Al2O3 catalysts[J]. Catal Lett, 2009, 130(3/4): 335-340.[4] LI F, YI X D, FANG W P. Effect of organic nickel precursor on the reduction performance and hydrogenation activity of Ni/Al2O3 catalysts[J]. Catal Lett, 2009, 130(3/4): 335-340.

    5. [5] LIU H C, WANG H, SHEN J H, SUN Y, LIU Z M. Preparation, characterization and activities of the nano-sized Ni/SBA-15 catalyst for producing COx-free hydrogen from ammonia[J]. Appl Catal A: Gen, 2008, 337(2): 138-147.[5] LIU H C, WANG H, SHEN J H, SUN Y, LIU Z M. Preparation, characterization and activities of the nano-sized Ni/SBA-15 catalyst for producing COx-free hydrogen from ammonia[J]. Appl Catal A: Gen, 2008, 337(2): 138-147.

    6. [6] REN S B, ZHANG P, SHUI H F, LEI Z P, WANG Z C, KANG S G. Promotion of Ni/SBA-15 catalyst for hydrogenation of naphthalene by pretreatment with ammonia/water vapour[J]. Catal Commun, 2010, 12(2): 132-136.[6] REN S B, ZHANG P, SHUI H F, LEI Z P, WANG Z C, KANG S G. Promotion of Ni/SBA-15 catalyst for hydrogenation of naphthalene by pretreatment with ammonia/water vapour[J]. Catal Commun, 2010, 12(2): 132-136.

    7. [7] LI X K, JI W J, ZHAO J, WANG S J, AU C T. Ammonia decomposition over Ru and Ni catalysts supported on fumed SiO2, MCM-41, and SBA-15[J]. J Catal, 2005, 236(2): 181-189.[7] LI X K, JI W J, ZHAO J, WANG S J, AU C T. Ammonia decomposition over Ru and Ni catalysts supported on fumed SiO2, MCM-41, and SBA-15[J]. J Catal, 2005, 236(2): 181-189.

    8. [8] POELS E K, DEKKER J G, LEEUWEN W A V. Hydrothermal sintering of the active phase in alumina supported fixed bed nickel catalysts during reduction[J]. Stud Surf Sci Catal, 1991, 63: 205-214.[8] POELS E K, DEKKER J G, LEEUWEN W A V. Hydrothermal sintering of the active phase in alumina supported fixed bed nickel catalysts during reduction[J]. Stud Surf Sci Catal, 1991, 63: 205-214.

    9. [9] VOS B, POELS E K, BLIEK A. Impact of calcination conditions on the structure of alumina-supported nickel particles[J]. J Catal, 2001, 198(1): 77-88.[9] VOS B, POELS E K, BLIEK A. Impact of calcination conditions on the structure of alumina-supported nickel particles[J]. J Catal, 2001, 198(1): 77-88.

    10. [10] DE LOOSDRECHT J V, BARRADAS S, CARICATO E A, NGWENYA N G, NKWANYANA P S, RAWAT M A S, SIGWEBELA B H, VAN BERGE P J, VISAGIE J L. Calcination of Co-based Fischer-Tropsch synthesis catalysts[J]. Top Catal, 2003, 26(1/4): 121-127.[10] DE LOOSDRECHT J V, BARRADAS S, CARICATO E A, NGWENYA N G, NKWANYANA P S, RAWAT M A S, SIGWEBELA B H, VAN BERGE P J, VISAGIE J L. Calcination of Co-based Fischer-Tropsch synthesis catalysts[J]. Top Catal, 2003, 26(1/4): 121-127.

    11. [11] SIETSMA J R A, MEELDIJK J D, BREEJEN J P, VERSLUIJS-HELDER M, JOS VAN DILLEN A, DE JONGH P E, DE JONG K P. The preparation of supported NiO and Co3O4 nanoparticles by the nitric oxide controlled thermal decomposition of nitrates[J]. Angew Chem Int Ed, 2007, 46(24): 4547-4549.[11] SIETSMA J R A, MEELDIJK J D, BREEJEN J P, VERSLUIJS-HELDER M, JOS VAN DILLEN A, DE JONGH P E, DE JONG K P. The preparation of supported NiO and Co3O4 nanoparticles by the nitric oxide controlled thermal decomposition of nitrates[J]. Angew Chem Int Ed, 2007, 46(24): 4547-4549.

    12. [12] SIETSMA J R A, FRIEDRICH H, BROERSMA A, VERSLUIJS-HELDER M, JOS VAN DILLEN A, DE JONGH P E, DE JONG K P. How nitric oxide affects the decomposition of supported nickel nitrate to arrive at highly dispersed catalysts[J]. J Catal, 2008, 260(2): 227-235.[12] SIETSMA J R A, FRIEDRICH H, BROERSMA A, VERSLUIJS-HELDER M, JOS VAN DILLEN A, DE JONGH P E, DE JONG K P. How nitric oxide affects the decomposition of supported nickel nitrate to arrive at highly dispersed catalysts[J]. J Catal, 2008, 260(2): 227-235.

    13. [13] SIETSMA J R A, MEELDIJK J D, VERSLUIJS-HELDER M, BROERSMA A, JOS VAN DILLEN A, DE JONGH P E, DE JONG K P. Ordered mesoporous silica to study the preparation of Ni/SiO2 ex nitrate catalysts: Impregnation, drying, and thermal treatments[J]. Chem Mater, 2008, 20(9): 2921-2931.[13] SIETSMA J R A, MEELDIJK J D, VERSLUIJS-HELDER M, BROERSMA A, JOS VAN DILLEN A, DE JONGH P E, DE JONG K P. Ordered mesoporous silica to study the preparation of Ni/SiO2 ex nitrate catalysts: Impregnation, drying, and thermal treatments[J]. Chem Mater, 2008, 20(9): 2921-2931.

    14. [14] REN S B, ZHAO R, ZHANG P, LEI Z P, WANG Z C, KANG S G, PAN C X, SHUI H F. Effect of activation atmosphere on reduction behaviors, dispersion and activities of nickel catalysts for hydrogenation of naphthalene[J]. React Kinet Mech Cat, 2014, 111(1): 247-257.[14] REN S B, ZHAO R, ZHANG P, LEI Z P, WANG Z C, KANG S G, PAN C X, SHUI H F. Effect of activation atmosphere on reduction behaviors, dispersion and activities of nickel catalysts for hydrogenation of naphthalene[J]. React Kinet Mech Cat, 2014, 111(1): 247-257.

    15. [15] KIRUMAKKI S R, SHPEIZER B G, SAGAR G V, CLEARFIELD A. Hydrogenation of Naphthalene over NiO/SiO2-Al2O3 catalysts: Structure-activity correlation[J]. J Catal, 2006, 242(2): 319-331.[15] KIRUMAKKI S R, SHPEIZER B G, SAGAR G V, CLEARFIELD A. Hydrogenation of Naphthalene over NiO/SiO2-Al2O3 catalysts: Structure-activity correlation[J]. J Catal, 2006, 242(2): 319-331.

    16. [16] VELU S, GANGWAL S K. Synthesis of alumina supported nickel nanoparticle catalysts and evaluation of nickel metal dispersions by temperature programmed desorption[J]. Solid State Ionics, 2006, 177(7): 803-811.[16] VELU S, GANGWAL S K. Synthesis of alumina supported nickel nanoparticle catalysts and evaluation of nickel metal dispersions by temperature programmed desorption[J]. Solid State Ionics, 2006, 177(7): 803-811.

    17. [17] DE JESUS J C, GONZ'ALEZ I, QUEVEDO A, PUERTA T. Thermal decomposition of nickel acetate tetrahydrate: An integrated study by TGA, QMS and XPS techniques[J]. J Mol Catal A, 2005, 228(1): 283-291.[17] DE JESUS J C, GONZ'ALEZ I, QUEVEDO A, PUERTA T. Thermal decomposition of nickel acetate tetrahydrate: An integrated study by TGA, QMS and XPS techniques[J]. J Mol Catal A, 2005, 228(1): 283-291.

    18. [18] HELVEG S, LÓPEZ-CARTES C, SEHESTED J, HANSEN P L, CLAUSEN B S, ROSTRUP-NIELSEN J R, ABILD-PEDERSEN F, NØRSKOV J K. Atomic-scale imaging of carbon nanofibre growth[J]. Nature, 2004, 427(6973): 426-429.[18] HELVEG S, LÓPEZ-CARTES C, SEHESTED J, HANSEN P L, CLAUSEN B S, ROSTRUP-NIELSEN J R, ABILD-PEDERSEN F, NØRSKOV J K. Atomic-scale imaging of carbon nanofibre growth[J]. Nature, 2004, 427(6973): 426-429.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  0
  • HTML全文浏览量:  0
文章相关
  • 收稿日期:  2013-12-16
  • 网络出版日期:  2014-02-25
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章