贵金属及其掺杂团簇与甲烷反应研究进展
张梅琦, 赵艳霞, 何圣贵
贵金属在甲烷活化与转化中呈现出优良的反应性。研究气态条件下贵金属物种与甲烷的反应,可以从分子水平上揭示凝聚相贵金属催化体系的活性位点与基元反应机理,为理性设计和改进催化剂提供理论基础。本文综述了贵金属原子、离子、团簇、氢化物、卤化物、氧化物、甲基配合物以及掺杂团簇活化、转化甲烷取得的新进展,并针对不同贵金属体系的甲烷活化机理展开讨论。
关键词: 贵金属, 甲烷, 原子团簇, 反应机理
钒氧阴离子团簇与小分子碳氢化合物反应的实验和理论研究
马嘉璧, 吴晓楠, 赵艳霞, 何圣贵, 丁迅雷
【物理化学学报】doi: 10.3866/PKU.WHXB20100737

为了在分子层次上揭示相关催化反应的机理, 人们对过渡金属氧化物团簇与碳氢化合物分子反应进行了大量研究. 相比于过渡金属氧化物团簇阳离子, 阴离子对一些碳氢化合物的活性弱得多, 因此研究还很少. 在本工作中, 我们通过激光溅射产生钒氧团簇阴离子VxOy, 产生的团簇在接近热碰撞条件下与烷烃(C2H6和C4H10)以及烯烃(C2H4和C3H6) 在一个快速流动反应管中进行反应, 飞行时间质谱用来检测反应前后的团簇分布. 在VxOy与烷烃的反应中, 生成了产物V2O6H-和V4O11H-; 在与烯烃的反应中, 产生了相应的吸附产物V4O11X-(X=C2H4或C3H6). 密度泛函理论计算表明: V2O-6和V4O-11可以活化烷烃(C2H6和C4H10)的C—H键, 也可以与烯烃(C2H4和C3H6)发生3+2环化加成反应形成一个五元环结构(-V-O-C-C-O-), C—H键活化与环加成反应都需经历可以克服的反应能垒. 理论计算与实验观测结果相符合. V2O-6和V4O-11团簇都具有氧原子自由基(O·或O-)的成键特征, 活性O-物种也经常出现在钒氧催化剂表面, 因而本研究在分子水平上, 揭示了表面活性氧物种与碳氢化合物反应的机理.

关键词:

密度泛函理论, 钒氧团簇, 飞行时间质谱, C—H键活化, 多相催化

基质分散固相萃取-超高效液相色谱-串联质谱法测定蔬菜风险监测中的9种农药残留
巩丽萍, 石峰, 姜树银, 赵艳霞, 郭常川
【色谱】doi: 10.3724/SP.J.1123.2014.12016
建立了基质分散固相萃取-超高效液相色谱-串联质谱测定蔬菜中多菌灵、氧乐果、克百威、涕灭威、毒死蜱、甲胺磷、甲拌磷、对硫磷、甲基对硫磷9种农药残留的方法。蔬菜通过乙腈提取、盐析分配、基质分散固相萃取净化后,采用Waters BEH C18柱(100 mm×2.1 mm, 1.7 μm),以乙腈和0.1%甲酸水溶液作为流动相,梯度洗脱,电喷雾电离正离子(ESI+)、多反应监测(MRM)模式测定,基质匹配标准溶液工作曲线法定量。该方法的检出限为0.8~4.0 μg/kg,回收率为72.8%~117.4%。50批蔬菜样品中毒死蜱、多菌灵和氧乐果残留的检出率分别为42.0%、14.0%和2.0%,毒死蜱超标率为8.0%,其他农药未检出。该法可同时测定食品风险监测中蔬菜的农药残留,具有操作方便、准确率高、重复性好等优点,可满足蔬菜中农药残留的检测要求。
关键词: 基质分散固相萃取, 超高效液相色谱-串联质谱, 农药残留, 风险监测, 蔬菜
贵金属及其掺杂团簇与甲烷反应研究进展
张梅琦, 赵艳霞, 何圣贵
贵金属在甲烷活化与转化中呈现出优良的反应性。研究气态条件下贵金属物种与甲烷的反应,可以从分子水平上揭示凝聚相贵金属催化体系的活性位点与基元反应机理,为理性设计和改进催化剂提供理论基础。本文综述了贵金属原子、离子、团簇、氢化物、卤化物、氧化物、甲基配合物以及掺杂团簇活化、转化甲烷取得的新进展,并针对不同贵金属体系的甲烷活化机理展开讨论。
关键词: 贵金属, 甲烷, 原子团簇, 反应机理
Thermal Activation of Methane by Diatomic Vanadium Boride Cations
Qiang CHEN, Li-Xue JIANG, Hai-Fang LI, Jiao-Jiao CHEN, Yan-Xia ZHAO, Sheng-Gui HE
【物理化学学报】doi: 10.3866/PKU.WHXB201811039
Methane activation by transition metal species has been extensively investigated over the past few decades. It is observed that ground-state monocations of bare 3d transition metals are inert toward CH4 at room temperature because of unfavorable thermodynamics. In contrast, many mono-ligated 3d transition metal cations, such as MO+ (M = Mn, Fe, Co, Cu, Zn), MH+ (M = Fe, Co), and NiX+ (X = H, CH3, F), as well as several bis-ligated 3d transition metal cations including OCrO+, Ni(H)(OH)+, and Fe(O)(OH)+ activate the C―H bond of methane under thermal collision conditions because of the pronounced ligand effects. In most of the above-mentioned examples, the 3d metal atoms are observed to cooperate with the attached ligands to activate the C―H bond. Compared to the extensive studies on active species comprising of middle and late 3d transition metals, the knowledge about the reactivity of early 3d transition metal species toward methane and the related C―H activation mechanisms are still very limited. Only two early 3d transition metal species HMO+ (M = Ti and V) are discovered so far to activate the C―H bond of methane via participation of their metal atoms. In this study, by performing mass spectrometric experiments and density functional theory calculations, we have identified that the diatomic vanadium boride cation (VB+) can activate methane to produce a dihydrogen molecule and carbon-boron species under thermal collision conditions. The strong electrostatic interaction makes the reaction preferentially proceed the V side. To generate experimentally observed product ions, a two-state reactivity scenario involving spin conversion from high-spin sextet to low-spin quartet is necessary at the entrance of the reaction. This result is consistent with the reported reactions of 3d transition metal species with CH4, in which the C―H bond cleavage generally occurs in the low-spin states, even if the ground states of the related active species are in the high-spin states. For VB+ + CH4, the insertion of the synergetic V―B unit (rather than a single V or B atom) into the H3C―H bond causes the initial C―H bond activation driven by the strong bond strengths of V―CH3 and B―H. The mechanisms of methane activation by VB+ discussed in this study may provide useful guidance to the future studies on methane activation by early transition metal systems.
关键词: Methane activation, Early transition metal, Boron, Mass spectrometry, Density functional theory
Orbitrap高分辨质谱用于保健食品中15种非法添加减肥类药物的筛查鉴定
谭会洁, 郭常川, 邢晟, 赵艳霞, 张迅杰, 石峰, 巩丽萍
【色谱】doi: 10.3724/SP.J.1123.2019.02009
建立了筛查保健食品中非法添加的15种减肥类化合物的液相色谱-Orbitrap高分辨质谱联用法和TraceFinder筛查数据库。样品以甲醇为提取溶剂,上清液过滤后直接进行液相色谱-质谱联用分析。质谱采用Full MS/dd-MS2扫描模式,正负离子同时检测。将采集的数据文件导入TraceFinder筛查软件,利用软件构建了化合物数据库及筛查方法进行快速、自动、高精度筛查,确定样品中是否违法添加了减肥类药物,并对阳性样品进行定量分析。方法学验证结果表明,所有化合物均显示出优异的线性关系,标准曲线回归系数(r)均大于0.998,回收率范围为79.7%~95.4%,精密度在3.3%~8.7%之间。应用该方法对29批保健食品进行了测定,在6批阳性样品中检出了4种化合物。该方法可实现自动、高精度筛查鉴定,为打击非法添加提供了新的手段。
关键词: 液相色谱, 高分辨质谱, 非法添加药物, 保健食品, 筛查, 鉴定
C―C Coupling of Methane Mediated by Atomic Gold Cations under Multiple-Collision Conditions
Yi Ren, Qing-Yu Liu, Yan-Xia Zhao, Qi Yang, Sheng-Gui He
【物理化学学报】doi: 10.3866/PKU.WHXB201904026
The reactivity of atomic metal cations toward CH4 has been extensively investigated over the past decades. Closed-shell metal cations in electronically ground states are usually inert with CH4 under thermal collision conditions because of the extremely high stability of methane. With the elevation of collision energies, closed-shell atomic gold cations (Au+) have been reported to react with CH4 under single-collision conditions to produce AuCH2+, AuH+, and AuCH3+ species. Further investigations found that the ion-source-generated AuCH2+ cations can react with CH4 to synthesize C―C coupling products. These previous studies suggested that new products for the reaction of Au+ with CH4 can be identified under multiple-collision conditions with sufficient collision energies. However, the reported ion-molecule reactions involving methane were usually performed under single- or multiple-collision conditions with thermal collision energies. In this study, a new reactor composed of a drift tube and ion funnel is constructed and coupled with a homemade reflectron time-of-flight mass spectrometer. Laser-ablation-generated Au+ ions are injected into the reactor and drift 120 mm to react with methane seeded in the helium drift gas. The reaction products and unreacted Au+ ions are focused through the ion funnel and accumulate through a linear ion trap and are then detected by a mass spectrometer. In the reactor, the pressure is approximately 100 Pa, and the electric field between the drift tube and ion funnel can regulate the collision energies between ions and molecules. The reaction of the closed-shell atomic Au+ cation with CH4 is investigated, and the C―C coupling product AuC2H4+ is observed under multiple-collision conditions with elevated collision energies. Density functional theory calculations are performed to understand the mechanism of the coupling reaction (Au++ 2CH4 → AuC2H4+ + 2H2). Two pathways involving Au―CH2 and Au―CH3 species can separately mediate the C―C coupling process. The activation of the second C―H bond in each process requires additional energy to overcome the relatively high barrier (2.07 and 2.29 eV). Ion-trajectory simulations under multiple-collision conditions are then conducted to determine the collisional energy distribution in the reactor. These simulations confirmed that the electric fields between the drift tube and ion funnel could supply sufficient center-of-mass kinetic energies to facilitate the C―C coupling process to form AuC2H4+. The following catalytic cycle could then be postulated: \begin{document}$\mathrm{AuC}_{2} \mathrm{H}_{4}^{+}+\mathrm{CH}_{4} \stackrel{\Delta}{\longrightarrow} \mathrm{AuCH}_{4}^{+}+\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{AuCH}_{4}^{+}+\mathrm{CH}_{4} \stackrel{\Delta}{\longrightarrow} \mathrm{AuC}_{2} \mathrm{H}_{4}^{+}+2 \mathrm{H}_{2}$\end{document}, and \begin{document}$\mathrm{CH}_{4} \stackrel{\mathrm{Au}^{+}, \Delta}{\longrightarrow} \mathrm{C}_{2} \mathrm{H}_{4}+2 \mathrm{H}_{2}$\end{document}. Thus, this study enriches the chemistry of both gold and methane.
关键词: Gold, Methane, Ion-molecule reaction, C―C coupling, Mass spectrometry

出版年份

相关作者

相关热词