首页 > 期刊 > 催化学报
目录
第40卷第1期目次
2019, 40(1): 0-0
[摘要]  (11) [HTML全文] (11) [PDF 2966KB] (0)
摘要:
学术讨论
关于双光束红外光谱在气固相多相催化反应实时原位表征中气相校正的讨论
Frederic Meunier
2019, 40(1): 1-3  doi: 10.1016/S1872-2067(18)63188-2
[摘要]  (16) [HTML全文] (16) [PDF 581KB] (0)
摘要:
综述
一维纳米材料在能源电催化中的研究进展
李苹, 陈卫
2019, 40(1): 4-22  doi: 10.1016/S1872-2067(18)63177-8
[摘要]  (18) [HTML全文] (18) [PDF 3378KB] (1)
摘要:
随着社会的快速发展,人类对能源的需求不断增加,化石能源的过度消耗造成了严重的环境污染和能源危机,引起全球各国的广泛关注.为解决这一问题,需要大力发展高效清洁的新能源转化装置.直接甲醇燃料电池和全水分解两种能源转化装置,因其高效率、低排放、低操作温度等优点,被认为是目前最具潜力的可再生能源.两种电化学体系能源转化过程中涉及的四个半反应分别是氧气还原反应(ORR)、甲醇氧化反应(MOR)、阴极氢气析出(HER)和阳极氧气析出(OER),而ORR和OER两个半反应由于动力学过程缓慢而成为甲醇燃料电池和全水分解两种装置转化效率的关键反应步骤,其中ORR反应过程中易发生两电子转移过程,生成中间产物,严重降低电流效率;OER反应涉及四电子转移和氧-氧键形成,相对于较易发生的二电子转移过程HER反应,反应动力学缓慢是影响转化效率的主要原因.因此,开发先进的电催化剂,尤其是高效ORR和OER催化剂,成为提高能源转化装置能量转化效率的关键.在过去十几年里,人们对基于贵金属铂、基于过渡金属及非金属纳米材料的电催化剂进行了充分研究并取得了重要进展,其中一维金属纳米材料(例如纳米线、纳米棒、纳米管等)因其具有独特的表面结构及物理和化学性能,表现出优越的电化学催化活性和较高的稳定性,在能源电催化领域具有潜在的应用价值.本文总结了一维金属纳米材料作为电催化剂应用于上述四种催化反应的研究进展,着重介绍了四种催化反应过程的反应机理、催化剂性能提升策略及其在催化反应过程中活性位的变化规律.
首先对涉及到的四个半反应在不同电解质溶液中的反应过程和机理进行了详细介绍,并分别讨论几种反应在热力学和动力学过程上的主要障碍.然后通过近年来的相关研究进展,讨论了影响电催化剂催化活性的几种因素.其中,催化剂的组成、不同量或不同种类的异质原子掺杂往往会使金属催化剂的电子结构发生不同程度的改变,从而影响催化剂的性能.通常,催化剂的电化学活性面积越大,暴露出的活性位点越多,越容易使催化剂活性位点与反应物接触,从而提高催化活性及加速传质过程.因此,很大一部分工作致力于提高纳米结构催化剂的有效活性面积,用于电催化反应.另外,表面结构和晶面的调控可以控制纳米材料的电催化专一性和选择性,提高催化效率.而纳米材料的电子传输能力也会对其催化活性产生较大影响.最后总结了提高一维金属纳米电催化剂催化活性的有效策略,为进一步设计高性能电催化剂提供了参考.
过渡金属-氮活性位点在二氧化碳电化学还原反应中的应用
阎程程, 林龙, 汪国雄, 包信和
2019, 40(1): 23-37  doi: 10.1016/S1872-2067(18)63161-4
[摘要]  (16) [HTML全文] (16) [PDF 4757KB] (0)
摘要:
大气中过高的CO2浓度严重影响自然界的碳循环平衡,对全球气候和生态环境提出了严峻挑战.但同时CO2作为一种潜在的碳资源,可通过催化转化生成高附加值的化学品.CO2电化学还原反应(CO2RR)可利用太阳能、风能等可再生能源产生的电能将CO2直接转化生成高附加值化学品和燃料,有助于构建"碳中性"的能源循环利用网络,具有极具潜力的应用前景.然而,活化稳定的CO2分子需克服一定的过电势,且由于反应在水相中进行,CO2RR与析氢反应互相竞争,因此开发高效、廉价、稳定的催化剂一直是CO2RR研究的难点.研究表明,含有金属-氮(M-Nx)活性位的催化材料如卟啉、酞菁等大环配合物、金属有机骨架材料以及通过热解法制备的金属-氮-碳(M-N-C)材料具有优异的CO2RR性能.本文从实验和理论两方面综述了近年来该类材料领域的相关进展,重点介绍了金属位点种类、配体结构、载体选择对催化剂本征活性的影响,并讨论了反应条件优化对CO2RR性能提升的作用.结合原位表征和理论计算结果探讨了含M-Nx材料反应条件下活性位的结构及反应路径,为合理设计和优化CO2RR催化剂体系提供了新思路.
快讯
水合状态的无定形氧化铁用作高效水氧化催化剂
陈政, 黄清娥, 黄保坤, 章福祥, 李灿
2019, 40(1): 38-42  doi: 10.1016/S1872-2067(18)63190-0
[摘要]  (17) [HTML全文] (17) [PDF 1443KB] (0)
摘要:
由于传统化石燃料的不可再生性和使用过程中对环境的污染,近年通过太阳光驱动催化水分解制备氢气或CO2还原制备甲醇等高能化学燃料是人工光合作用制备太阳能燃料领域的研究重点.水的氧化反应是制备太阳能燃料的重要半反应,为质子或CO2的还原提供必需的质子和电子,开发基于非贵金属氧化物的高效水氧化催化剂是人工光合作用制备太阳能燃料的重要挑战之一.最近我们课题组的研究发现,无定形氧化钴作为水氧化催化剂时,其本征活性比结晶态的高出一个数量级.与氧化钴催化剂相比,铁基氧化物作为水氧化催化剂具有许多优点,比如成本低、环境友好、对动植物不产生生理毒性.基于此,本文探索了开发制备具有高催化活性的铁基氧化物作为水氧化催化剂.
结果发现,氧化铁水氧化催化剂活性不但受其结晶度影响,还与其水合状态密切相关.水合氧化铁在进行室温真空干燥脱水处理后,在Ru(bpy)32+-Na2S2O8光催化水氧化体系中,其催化水氧化活性降低了一个数量级.热重分析、XRD和拉曼测试等结果表明,室温下进行脱水处理后,氧化铁基本不含有水分子的信号,其体相结构没有发生显著的变化.XRD和拉曼结果表明,催化水氧化测试后回收的氧化铁催化剂结构没有发生改变,表明该水合状态的氧化铁是水氧化过程中真实的催化剂成分,并不是充当前驱体的角色.
基于此,我们进一步制备了尺寸较小且为水合状态的无定形氧化铁纳米粒子,后者在Ru(bpy)32+-Na2S2O8光催化水氧化体系中显示出极高的催化活性,TOF值高达9.3s-1,基于产生的氧气分子计算的光催化量子效率达到67%.该尺寸较小的水合状态氧化铁纳米粒子还可以有效地负载在SiO2表面进行催化水氧化反应,循环测试结果表明,负载的水合状态氧化铁纳米粒子连续进行三个催化水氧化循环测试,其活性未明显衰减,显示了较高的稳定性.该结果表明,未来设计铁基氧化物作为高活性的水氧化催化剂时,需要特别考虑其水合状态.
论文
可逆氧催化性能提升的FeS2/NiS2纳米复合物的合成及其在锌空电池中的应用
靳晶, 殷杰, 刘瀚文, 席聘贤
2019, 40(1): 43-51  doi: 10.1016/S1872-2067(18)63175-4
[摘要]  (17) [HTML全文] (17) [PDF 2723KB] (0)
摘要:
当今世界环境与能源问题仍广受关注,我们所依赖的燃料电池大部分依然是不可再生的能源,如煤、石油、天然气等化石燃料,且在使用过程中产生大量的有毒有害气体,造成酸雨、温室效应等不良后果,对环境造成严重的影响.因此,寻找一种可替代化石燃料、环境友好且可再生的新能源燃料意义重大.新型高效稳定的可逆氧催化材料在可再生能源,如锌空电池的应用中具有重要作用,而这种电池是一种可再生的新型能源,对环境友好.因此,本文设计了一种具有优良的可逆氧催化性能的材料.
首先通过水热法合成NiFe2O4前驱体,然后在管式炉中对其进行高温硫化,最后采用超声辅助液相剥离法制备了丝状界面FeS2/NiS2复合纳米材料.所合成的催化剂具有独特的丝状形貌和界面,因而具有优良的双功能电催化性能和可逆氧催化性能.对于氧析出反应(OER),该材料具有较低的过电势,仅需233mV过电势即可实现析氧电流10mA cm-2,该性能优于大多数报道的NiFe催化材料的性能;同时,该材料对氧还原反应(ORR)也具有很好的催化效果,其中ORR反应的起始电压为911mV,半波电位为640mV.OER和ORR催化活性结果表明,该材料具有优良的可逆氧催化性能,其△E值为0.823V,优于贵金属催化材料.基于此,我们设计组装了液态和固态的锌空电池,并进行一系列的测试.结果表明,该系列电池在测试条件下均具有较高的开路电压和优良的充放电能力,并且在固态的锌空电池上表现出很好的可弯曲性,使其成为一种非常好的可折叠柔性固态锌空电池,具有更广泛的应用前景.这也为传统过渡金属催化材料的设计合成提供了新思路:在传统过渡金属的基础上,可通过更加新颖的合成方法使其具有独特的形貌,乃至非常好的双功能催化性和可逆氧催化性能,从而推动锌空电池的发展.另外,本文所设计的固态柔性锌空电池模型也可为相关设计应用提供参考.
以胆碱为绿色无毒有机结构导向剂合成高硅Y型分子筛
贺大威, 袁丹华, 宋智甲, 徐云鹏, 刘中民
2019, 40(1): 52-59  doi: 10.1016/S1872-2067(18)63167-5
[摘要]  (14) [HTML全文] (14) [PDF 2200KB] (0)
摘要:
分子筛作为一类重要的无机多孔晶体材料,由于其规整的孔道结构以及优异的酸性质等特点,在催化剂、吸附剂和离子交换床等许多领域有着重要而广泛的应用.而现代分子筛制备方法的发展主要得益于有机结构导向剂(OSDA)在分子筛合成中的广泛使用.但是,大部分OSDA都具有剧毒、价格昂贵、制备方法繁琐等缺点,因而限制了其大规模应用.高硅Y型分子筛的合成研究也面临同样的问题.
Y型分子筛具有十二元环孔口和三维孔道结构,是目前催化裂化催化剂中的主要活性组分.目前,通过常规合成方法无法获得硅铝比大于6.0的Y型分子筛,无法满足石油化工对其酸性的要求.目前工业上主要通过后处理法得到高硅Y沸石,但该方法繁杂的后处理过程、不均匀的化学分布、大量损失的结晶度以及严重的环境污染促使人们开发直接合成高硅Y型分子筛的新方法以替代后处理过程.此外,使用OSDA一步法合成的高硅铝比Y型分子筛具有优异的热和水热稳定性.因此,使用OSDA一步直接合成高硅Y型分子筛在材料合成和催化领域一直备受关注.然而,目前尚未见关于绿色OSDA用于高硅Y型分子筛合成的报道.
本研究首次将氢氧化胆碱或氯化胆碱作为一种新型、绿色、廉价的OSDA引入到高硅Y分子筛的合成凝胶体系,成功合成了高结晶度且硅铝比大于6.0的高硅Y型分子筛.实验详细考察了合成条件对硅铝比的影响,并采用XRD,XRF,NMR,TG以及N2物理吸附等表征手段研究了合成样品的物理化学性质.表征结果证明,胆碱阳离子作为一个稳定的OSDA存在于分子筛的孔结构中,并且取代了部分Na+以平衡分子筛骨架的负电荷,因此胆碱的使用可使样品的硅铝比提高并具有更加优异的热稳定性和水热稳定性.实验确定了Na+和OSDA+在高硅Y分子筛合成中的竞争关系.大量的实验证据表明,Na+进料比例对FAU骨架硅铝比有决定性的影响.首次提出采用氢氧根离子型OSDA是一种直接有效提高骨架硅铝比的方法.
构建2D-2D TiO2纳米片/层状WS2异质结用以增强可见光响应光催化活性
吴勇川, 刘中敏, 李亚茹, 陈继涛, 主曦曦, 那平
2019, 40(1): 60-69  doi: 10.1016/S1872-2067(18)63170-5
[摘要]  (15) [HTML全文] (15) [PDF 4351KB] (3)
摘要:
自Fujishima等首次报道以来,TiO2作为一种重要的光催化剂引起了人们的广泛关注.迄今为止,研究人员已经开发出了各种形貌的具有不同晶型结构的TiO2,并用于光催化降解有机污染物.然而,TiO2的宽禁带(3.2eV)使其难以被可见光激活,导致对太阳光的利用效率低下.而且,在光催化反应中,低的量子效率无法满足实际应用.因此,开发具有可见光响应的高催化活性的TiO2基催化剂具有重要意义.集成复合材料、纳米材料和界面的优势构建纳米复合材料已成为提高TiO2光催化活性的重要策略.WS2具有典型的类石墨烯层状结构和窄的带隙(1.35eV),且其导带高于TiO2的导带,适合作为助催化剂修饰TiO2,使其具备可见光响应光催化活性.
本文采用一步水热法,以二维(2D)TiO2纳米片作基质材料,直接在其表面原位生长WS2层,制得了2D-2D TiO2纳米片/层状WS2(TNS/WS2)异质结.XRD及Raman结果表明,层状WS2与TiO2纳米片紧密结合在一起,且两者之间形成了W=O键.TEM结果显示,层状WS2以面-面堆叠方式均匀地包覆在TiO2纳米片表面,包覆层数约为4层.光催化性能测试结果表明,可见光照射下,TNS/WS2异质结对RhB的光催化降解能力高于原始TiO2纳米片和层状WS2,光催化活性得到明显增强.
紫外可见光谱试验结果显示,层状WS2的引入极大地增强了异质结的光吸收性能.PL光谱测试表明,TNS/WS2异质结具有更高效的载流子分离效率.为了进一步证实是光吸收性能的提升还是载流子分离效率的增强对光催化性能提起其主要作用,本文还研究了3D-2D TiO2空心微球/层状WS2(THS/WS2)复合材料.结果表明,TNS/WS2异质结比THS/WS2复合材料具有更高效的光生电子和空穴的分离能力.从而证明了TiO2纳米片与层状WS2之间完美的2D-2D纳米界面和紧密的界面结合,显著增加了载流子分离效率,因此光催化活性得到明显提高.
为了研究TNS/WS2异质结光催化剂的光催化机理,采用重铬酸钾、草酸铵、叔丁醇和对苯醌作自由基猝灭剂进行了自由基捕捉剂实验.结果表明,空穴在RhB降解过程中起主要作用,超氧自由基起次要作用.基于自由基猝灭实验结果和带隙结构分析,提出了TNS/WS2异质结对RhB的光催化机理为双转移光催化机理.可见,界面异质结工程化可能是制备高效和环境稳定的光催化剂的新思路.
模拟太阳光照射下MIL-100(Fe)/g-C3N4异质结光催化Cr (VI)还原和双氯芬酸钠降解
杜雪冬, 衣晓虹, 王鹏, 邓积光, 王崇臣
2019, 40(1): 70-79  doi: 10.1016/S1872-2067(18)63160-2
[摘要]  (17) [HTML全文] (17) [PDF 2314KB] (0)
摘要:
有毒重金属离子Cr(VI)广泛应用于制革、电镀、印刷、颜料和抛光等行业,因而成为地表水和地下水中常见的污染物.光催化还原Cr(VI)为Cr(Ⅲ)利用可持续能源太阳能,费用低且没有二次污染问题,已经受到广泛关注.g-C3N4是一种稳定性好且能吸收可见光的优异光催化材料,但也具有比表面积小及电子和空穴容易复合等缺点.为进一步提高g-C3N4的光催化效率,人们合成了各种新型复合材料,如g-C3N4/Bi2WO6,g-C3N4/SiW11和g-C3N4/Zn3V2O7(OH)2(H2O)2等.
本文通过非常简便的球磨-煅烧法制备了金属-有机骨架材料MIL-100(Fe)与类石墨结构氮化碳(g-C3N4)的异质结结构(MG-xx=5%,10%,20%和30%,代表MIL-100(Fe)占复合物的质量分数),并对复合材料进行了粉末X射线衍射(PXRD)、红外光谱(FTIR)、热重(TGA)、透射电镜(TEM)、紫外-可见漫反射光谱(UV-Vis DR)和荧光光谱(PL)等表征.实验研究了MG-x在模拟太阳光照射下光催化还原Cr(VI)和降解双氯芬酸钠的性能,考察了空穴捕捉剂(乙醇、柠檬酸、草酸和双氯芬酸钠)和pH值(2-8)对光催化还原Cr(VI)效率的影响.
实验结果表明,PXRD谱图显示复合物的衍射峰位置均与MIL-100(Fe)及g-C3N4的峰位置相吻合,球磨和煅烧后无新衍射峰产生.TEM图片证明复合物中g-C3N4附着在MIL-100(Fe)表面.光照80min后,MG-x复合物的还原效率均大于92%,高于MIL-100(Fe)(75.6%)和g-C3N4(79.8%)的还原效率.其中,MG-20%的光催化活性最高,还原效率达到97.0%,且还原Cr(VI)的速率分别是MIL-100(Fe)的3.08倍和g-C3N4的2.31倍.随着MIL-100(Fe)含量的增加,复合物的光催化活性先增后减.这是因为MIL-100(Fe)含量的增加不仅有利于电荷的转移,也有利于可见光的利用,然而过多的MIL-100(Fe)可能会影响异质结的质量,不利于电荷的转移.随着溶液pH值从2提高到8,还原效率从98%降低到9%.这是因为在酸性条件下H+浓度高有利于Cr(VI)还原为Cr(Ⅲ),而当pH>6时,Cr3+与OH-形成Cr(OH)3沉淀附着在催化剂表面,影响对光的吸收,降低了光催化效率.当反应体系中加入乙醇、柠檬酸和草酸时,光催化速率提高,而加入双氯芬酸钠后光催化速率未见提高,这是由于小分子链烃有机物容易捕捉光生空穴,而双氯芬酸钠不能有效捕捉MG-20%产生的光生空穴.电化学测试证明g-C3N4的光生电子可转移到MIL-100(Fe)的导带,复合物提高了光生电子和光生空穴的分离效率,从而提高了光催化还原Cr(VI)的活性.同时,在加入H2O2的条件下,MG-20%在50min内光催化降解双氯芬酸钠的效率达到100%.MG-20%循环使用5次后,光催化效率没有明显降低,光催化剂的XRD谱没有发生明显变化,证明其具有很好的稳定性.综上,本研究提供了一种具有应用前景的高效MOF/g-C3N4复合物光催化剂.
聚邻苯二胺修饰AgCl/g-C3N4纳米片复合光催化剂的制备及性能
孙林林, 刘重阳, 李金择, 周亚举, 王会琴, 霍鹏伟, 马长畅, 闫永胜
2019, 40(1): 80-94  doi: 10.1016/S1872-2067(18)63172-9
[摘要]  (16) [HTML全文] (16) [PDF 7762KB] (1)
摘要:
近年来,工业社会的发展为人们的日常生活带来了便利,然而也引起了环境污染问题.尤其是抗生素的滥用,不仅会导致各种慢性疾病和微生物的传播,而且会使微生物对抗生素产生抵抗力.因此,寻找一种有效且环保的方法来解决抗生素残留问题至关重要.光催化技术作为一种"绿色"技术,具有充分利用太阳光、降低能耗和完全矿化有机物的突出优点,已被广泛应用于消除环境污染.
光敏半导体材料AgCl具有良好的光响应范围、无毒、易制备等优点,成为光催化降解污染物过程中促进光催化剂活性的理想材料.然而,制备的AgCl纳米颗粒易于团聚并发生光腐蚀.目前,片状g-C3N4具有比表面积大和适当的带隙等优点.因此,构筑AgCl/g-C3N4异质结复合光催化剂不仅可以降低光生电子和空穴的复合速率,加快电子传输,还可以解决AgCl纳米颗粒易于团聚的问题.此外,聚邻苯二胺(PoPD)作为一种导电聚合物,具有高效的电子传输能力,用其包裹AgCl可以防止光腐蚀现象的发生.
本文采用沉淀法和光引发聚合法合成了新型高效的PoPD/AgCl/g-C3N4复合材料,并以20mg/L四环素作为目标污染物测试其可见光下的催化性能.用X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电镜(SEM)和比表面积(BET)测定等方法表征分析了催化剂的结构特征、微观形貌和光学性能.XRD分析发现,PoPD未影响AgCl/g-C3N4催化剂的晶型结构.XPS结果表明,复合材料由C,N,Ag,O,Cl元素组成,并能得到它们的元素价态.由SEM照片可看到不规则薄片状g-C3N4表面均匀地负载着被PoPD包裹的AgCl颗粒.根据BET测试结果,片状的g-C3N4比表面积比块状的增大4倍,使目标污染物能与光催化剂表面活性物质充分接触反应.光催化性能测试结果进一步表明,PoPD/AgCl-35/g-C3N4在可见光下具有优异的光催化性能:可见光照射120min内,四环素的降解效率可达83.06%,降解速率常数是纯g-C3N4的7.98倍.循环实验表明,经过四次循环后催化剂仍具有优异的光催化降解性能,说明所合成的催化剂具有良好的稳定性.
用抗坏血酸、乙二胺四乙酸和异丙醇捕获剂进行了自由基捕获实验,进一步研究PoPD/AgCl/g-C3N4催化剂的光催化机理.结果表明,超氧自由基和空穴在降解四环素过程中起主要作用,羟基自由基的作用相对较小.通过价带谱测试和带隙计算出材料的价导带位置,并对可能的机理进行了相应的分析.总之,PoPD/AgCl/g-C3N4光催化剂具有良好的稳定性和优异的光催化性能,为制备高稳定性复合光催化剂提供了一种新技术.
Ce4+,Zr4+共掺杂提高V2O5-WO3/TiO2催化剂脱硝性能及抗K中毒能力
曹俊, 姚小江, 杨复沫, 陈丽, 傅敏, 汤常金, 董林
2019, 40(1): 95-104  doi: 10.1016/S1872-2067(18)63184-5
[摘要]  (15) [HTML全文] (15) [PDF 1123KB] (1)
摘要:
近年来,NOx的排放造成了严重的环境污染.氨选择性催化还原技术(NH3-SCR)是目前消除NOx最有效的手段之一.V2O5-WO3/TiO2催化剂在300-400℃范围内表现出优异的脱硝性能,因此被广泛用于NH3-SCR反应.然而该催化剂抗碱(土)金属中毒性能较差,且碱(土)金属碱性越强对催化剂的毒害越大(即K > Na > Ca > Mg).已有研究显示,当K2O质量分数达1%时,催化剂将完全失活,所以对传统的V2O5-WO3/TiO2催化剂进行改性以提高其抗K中毒性能具有十分重要的意义.
最近,CeO2由于具有优异的氧化还原性能和储/释氧能力,在NH3-SCR反应得到了广泛的关注.研究显示,CeO2的改性可提高钒基催化剂脱硝活性及抗碱金属中毒性能,这主要是由于CeO2的掺杂可以有效提高催化剂表面酸性及氧化还原能力.ZrO2是一种酸碱两性氧化物,常被用作载体或者助剂.研究显示,ZrO2的引入可以提高催化剂热稳定性,增大比表面积以及提高氧迁移能力.基于此,我们制备了一系列的V2O5-WO3/TiO2-ZrO2,V2O5-WO3/TiO2-CeO2以及V2O5-WO3/TiO2-CeO2-ZrO2催化剂,以期提高V2O5-WO3/TiO2催化剂脱硝性能及抗K中毒能力.
研究发现,Ce4+,Zr4+共掺杂可以有效提高V2O5-WO3/TiO2催化活性,拓宽反应温度窗口,增强抗K中毒能力.进一步借助X射线衍射、比表面积测定、氨气-程序升温脱附、氢气-程序升温还原和X射线光电子能谱等表征对催化剂进行全面分析.结果显示,Ce4+,Zr4+共掺杂对V2O5-WO3/TiO2催化剂物理化学性质的影响与其脱硝性能及抗K中毒能力有着密不可分的关系.首先,Ce4+,Zr4+可以掺杂进入TiO2晶格,抑制TiO2晶粒的生长,从而导致比表面积以及总孔体积的增加;比表面积的增加有利于活性物种的分散,而总孔体积的增加有利于反应物分子与催化剂充分接触.其次,Ce4+,Zr4+共掺杂可以提高催化剂表面酸性和氧化还原性能,表面酸性的增加有利于催化剂吸附与活化反应物种NH3,氧化还原性能的提高有利于NO氧化为NO2,进而通过"快速NH3-SCR"反应提高催化剂活性;同时,Ce4+,Zr4+共掺杂还可以有效降低K中毒对表面酸性和氧化还原性能的影响,这主要是由于Ce4+可以与K原子结合形成Ce-O-K物种,而Zr4+的引入可以增加Ce4+的热稳定性,使得更多的Ce4+与K结合,避免了K与活性钒物种结合形成V-O-K物种,使得活性V5+得到了有效的保护.原位红外实验揭示了V2O5-WO3/TiO2-CeO2-ZrO2催化反应遵循L-H机理,且K中毒并未改变其反应机理.最后,该催化剂在H2O和SO2存在的条件下仍具有最佳的脱硝性能,因而有望用于实际高K含量的燃煤烟气脱硝.
CuO和Au纳米结构协同增强Cu2O立方体光催化活性和稳定性
蒋登辉, 张跃钢, 李鑫恒
2019, 40(1): 105-113  doi: 10.1016/S1872-2067(18)63164-X
[摘要]  (16) [HTML全文] (16) [PDF 3770KB] (0)
摘要:
氧化亚铜(Cu2O)是一种重要的P型半导体,并且具有无毒、廉价和易于控制合成等优点,被广泛应用于光催化领域.然而,低的光催化性能极大地限制了它的应用,特别是氧化亚铜立方体表面存在的障碍层严重阻碍了光生载流子传输,导致其几乎没有光催化活性.构建异质结构是提高氧化亚铜光催化性能的有效手段,然而,目前氧化亚铜异质结构的光催化性能和稳定性仍然需要大幅地提高.我们的前期研究发现,通过乙二胺在氧化亚铜表面轻微氧化刻蚀形成CuO/Cu2O异质结构,在提高一定的光催化活性的同时能够大幅提高其稳定性.另外,在氧化亚铜表面负载金纳米颗粒也能够有效地增强氧化亚铜的光催化性能.因此,协同氧化铜和金纳米颗粒应该能够同时大幅地提高氧化亚铜的光催化活性和稳定性.
本文利用乙二胺对氧化亚铜立方体进行轻微的氧化刻蚀,然后光还原负载金纳米颗粒,成功地制备了Au/CuO/Cu2O异质结构.TEM和SEM结果表明,氧化铜和金纳米结构随机均匀地分散在氧化亚铜表面.XPS数据表明,Au/CuO/Cu2O异质结构表面的二价铜主要来自生成的氧化铜纳米结构.表面残存的N元素表明,氧化铜由一价铜与乙二胺形成的配合物转变而来.在可见光下光催化降解甲基橙实验结果显示,Au/CuO/Cu2O异质结构的光降解速率大幅地提高.通过表观量子效率的估算发现,Au/CuO/Cu2O异质结构光催化活性是纯Cu2O的123倍,Au/Cu2O的5.4倍.光电流测试中,Au/CuO/Cu2O异质结构的光电流也都明显高于Cu2O,Au/Cu2O和CuO/Cu2O.不仅如此,Au/CuO/Cu2O异质结构在8个循环后还能维持80%的光催化活性,远高于Au/Cu2O的5个循环.由此可见,Au/CuO/Cu2O异质结构具有增强的光催化活性和稳定性.
通过电子顺磁共振(ESR)自由基测试发现,光催化降解过程中,羟基自由基是主要的氧化物种,而且Au/CuO/Cu2O异质结构的自由基信号强度明显高于Cu2O和CuO/Cu2O,这也说明金和氧化铜的双异质结构提高了体系载流子分离效率.PL数据进一步证实了这一结论.另外,比表面积和暗吸附实验数据表明,轻微的表面积增加不会显著地改变三元异质结构的吸附和光催化性能.根据UV-Vis和价带XPS数据,我们认为轻微光吸收变化和价带改变不会显著影响异质结构的光催化活性.因此,金和氧化铜纳米结构协同增强光生载流子分离效率,是提高氧化亚铜光催化活性的主要原因.首先,Au/Cu2O异质结构通过肖特基结和金颗粒的表面等离子共振效应提高光生载流子的分离效率.其次,氧化铜纳米结构不仅能与氧化亚铜形成Ⅱ型异质结构,而且还能够作为保护层提高氧化亚铜的稳定性.另外,氧化铜纳米结构生成过程中去除了表面障碍层,减少空穴在氧化亚铜上的累积,进而提高氧化亚铜的稳定性.总之,氧化铜和金纳米结构的协同效应显著提高了体系的光催化活性和稳定性.
以RuCl3/SiO2为模板制备高性能镶嵌式钌基氨合成催化剂
周亚萍, 马永承, 蓝国钧, 唐浩东, 韩文锋, 刘化章, 李瑛
2019, 40(1): 114-123  doi: 10.1016/S1872-2067(18)63192-4
[摘要]  (15) [HTML全文] (15) [PDF 4447KB] (2)
摘要:
合成氨工业是国家能源与战略的基石,是化学工业的支柱产业,随着国家产业升级与转型,对合成氨工业的能耗提出了较为严厉的要求.钌基催化剂被誉为继铁催化剂后的第二代氨合成催化剂,与铁催化剂相比,钌基催化剂在低温和低压下具有优异的催化性能.炭材料因具有低成本、高比表面积以及电子传输和热传输等独特性能,比其它化合物如MgO,Al2O3和BN等更适合作为Ru催化剂的载体,而且也是除铁催化剂外唯一已工业化的载体.虽然炭负载钌催化剂的甲烷化是不可避免的,但BP公司使用石墨化碳作为载体成功地解决了这个问题,并实现了工业化.为了进一步提高钌基催化剂性能,对钌炭催化剂的结构设计尤为重要.
中孔炭(MC)孔隙结构发达,可以为钌纳米粒子的分散提供空间,从而有效提高金属钌的利用率,中孔炭负载的钌基催化剂在合成氨反应中表现出优异的催化性能.传统负载型钌基催化剂的制备一般采用浸渍法,虽然可获得高分散的Ru纳米粒子,但其只会分布在载体的表面,因此在反应过程中就容易发生金属纳米粒子的团聚和流失,大大降低使用寿命.而随着新材料制备技术的发展,对催化剂的设计合成方法的研究也越来越多.当金属纳米粒子被镶嵌在载体的壁上时,金属和载体之间就具有较强的相互作用,因而可以稳定金属纳米粒子.
本文通过蔗糖原位炭化法将Ru纳米颗粒半嵌入在炭材料中制备镶嵌式Ru-MC催化剂,并采用HRTEM,CO化学吸附等手段系统研究了镶嵌式Ru-MC催化剂与传统浸渍法制备的负载型Ru/MC催化剂之间的差异.采用等体积浸渍法添加Ba和K助剂制备催化剂Ba-K/Ru-MC和Ba-Ru-K/MC.和Ba-Ru-K/MC催化剂相比,Ba-K/Ru-MC催化剂上钌炭相互作用力增强,不但有效提高了钌催化剂的催化活性,而且提高了该催化剂的抗甲烷化能力,从而提高了氨合成条件下催化剂的稳定性和使用寿命.采用该方法制备的钌基催化剂在400℃,10000h-1,10MPa和H2/N2=3.0的反应条件下,氨合成反应速率可以达到133mmol/(g·h),其性能远高于目前报导的钌基催化剂和传统的熔铁催化剂.

  

目录
第39卷第11期目次
2018, 39(11): 0-0
[摘要]  (72) [HTML全文] (72) [PDF 1502KB] (72)
摘要:
快讯
铜催化芳香醛和酮的氢硼化转化合成苄基硼酸酯类化合物
王露, 孙威, 刘超
2018, 39(11): 1725-1729  doi: 10.1016/S1872-2067(18)63139-0
[摘要]  (72) [HTML全文] (72) [PDF 486KB] (72)
摘要:
有机硼化合物广泛应用于合成化学、药物化学以及材料化学等领域,开发新颖实用的方法合成有机硼化合物是重要的研究领域.在各种有机硼化合物中,苄基硼酸酯有着一些特有的性质,例如活性相对较高,可以有效地当作苄基化试剂使用.目前已有多种合成苄基硼酸酯的方法,主要集中在苄基格氏试剂或者锂试剂的硼化反应,但是该方法底物兼容性较差,而且苄基格氏试剂或者锂试剂的制备比较困难.随着催化反应的发展,过渡金属(如Pd,Cu,Ni,Fe)催化苄基卤代物的硼化反应及芳基卤代物和1,1-二硼类化合物的偶联反应能够有效地合成这类化合物.一级苄醇在钯或铜的催化作用下也可以转化为苄基硼酸酯.苄基C-H键的催化硼化是潜在的构建苄基硼酸酯的高原子经济性的方法,但目前其选择性和反应活性仍不高.在无金属催化的条件下,对甲苯磺酰腙类化合物与HBpin或B2pin2发生1,2-金属迁移是合成苄基硼酸酯的有效方法.到目前为止,虽然有很多种合成苄基硼酸酯的方法,但仍无法满足其合成需求,因此开发新型的方法合成苄基硼酸酯具有重要的意义.
本文开发了一种新型的铜催化芳香醛/酮类化合物的脱氧氢硼化转化体系.使用廉价易得的铜作为催化剂,叔丁醇钠或者叔丁醇钾作为碱,醇质子作为氢源,在100℃的条件下,芳香醛和芳香酮可直接转化成一级和二级苄基硼酸酯类化合物,该反应操作简单,反应体系可以兼容多种官能团,分离产率在21%-77%之间.反应机理方面,该转化有两种可能的过程,(1)反应体系中首先生成1,1-偕二硼化合物,该化合物在碱和EtOH的作用下发生脱硼质子解,最终转化成苄基单硼化合物;(2)醇质子转化成负氢物种,并与体系中的a-OBpin硼酸酯生成四配位硼,发生1,2-迁移后得到目标产物.
为了验证上述两种反应途径的可行性,我们进行了一系列的控制试验.首先合成了苯乙酮的1,1-二硼化合物,在催化量碱与当量醇的作用下,以99%的收率得到了脱硼质子解的产物,说明1,1-二硼化合物可以在反应体系中转化成苄基单硼化合物.以苯甲醛作为原料合成了a-OBpin硼酸酯,首先将其投入到甲醇、叔丁醇钠和B2pin2的体系中,最终得到了47%的苄基单硼;同时将a-OBpin硼酸酯投入到HBpin与叔丁醇钠的体系中,得到了57%的苄基单硼化合物,说明第二种反应过程通过1,2-迁移得到目标产物也是可行的.在当前的实验条件下,两种反应路径都是可能的.
光诱导双助催化剂在半导体表面的自发形成
慕林超, 张巧, 陶晓萍, 赵越, 王升扬, 崔俊艳, 范峰滔, 李灿
2018, 39(11): 1730-1735  doi: 10.1016/S1872-2067(18)63138-9
[摘要]  (106) [HTML全文] (106) [PDF 1126KB] (106)
摘要:
半导体光催化体系的助催化剂在光生电荷分离和表面催化反应过程中扮演着重要的角色.然而,在反应条件下助催化剂的化学态是否发生改变尚不清楚.本文以钽酸钠为模型光催化剂,系统地研究了镍基助催化剂在光催化分解水反应中的化学态.结果发现,在光诱导条件下半导体钽酸钠单晶表面自发形成了金属镍和氧化镍双助催化剂.
首先用传统的水热法合成只暴露单一晶面的六面体钽酸钠半导体单晶光催化剂和暴露不等同晶面的二十六面体钽酸钠半导体单晶光催化剂.原位光沉积结果显示,暴露不同晶面的二十六面体钽酸钠半导体单晶光催化剂存在晶面间的电荷分离现象,进一步利用该现象可以确定不同催化活性位上镍基助催化剂的作用.XPS结果显示,半导体钽酸钠单晶表面的镍基助催化剂存在的不同价态.高分辨透射电镜结果表明,不同晶面上的镍基助催化剂具有不同的形貌,并且通过晶格衍射条纹的对比确认了不同镍基助催化剂物种的归属和作用.
将表面浸渍氧化镍的二十六面体钽酸钠半导体光催化剂用于全分解水测试发现,反应开始阶段H2:O2比值小于2:1,说明部分光生电子被消耗掉,用于还原氧化镍,生成了金属镍.将表面还原的金属镍光催化剂进行全分解水测试发现,反应开始阶段H2:O2比值大于2:1,说明部分光生空穴被消耗掉,用于氧化金属镍,生成了氧化镍,金属镍和氧化镍最终在反应的过程中达到了平衡.金属镍担载在{001}晶面上,起着还原助催化剂的作用,参与质子还原,释放出H2;氧化镍担载在其他晶面上,扮演着氧化助催化剂,参与水的氧化,释放出O2;金属镍和氧化镍共同促进了光催化全分解水反应,使反应活性达到了最高.这种双助催化剂的自发形成现象不仅存在于二十六面体钽酸钠单晶半导体表面,在六面体钽酸钠单晶半导体表面也同样存在,是一个普适性的现象.在六面体钽酸钠半导体单晶光催化剂表面同样可以发现不同形貌的镍基助催化剂,分别归属于金属镍和氧化镍.本文说明了助催化剂的化学态在光催化反应的条件下是可以发生改变的,并且光生电荷可以在半导体表面诱导双助催化剂的自发形成.
论文
通过温和的镍腐蚀制备珊瑚状FeNi(OH)x/Ni作为一种一体化高效水分解电极
向锐, 童成, 王尧, 彭立山, 聂瑶, 李莉, 黄寻, 魏子栋
2018, 39(11): 1736-1745  doi: 10.1016/S1872-2067(18)63150-X
[摘要]  (97) [HTML全文] (97) [PDF 1170KB] (97)
摘要:
高效稳定并可同时催化析氧反应(OER)和析氢反应(HER)的非贵金属催化剂对于实现廉价水分解电解槽的商业化十分重要.虽然众多研究表明FeNi(OH)x是一种极具潜力的催化剂,但是在基础研究与更有实用前景的电极之间仍有许多空白亟待填补.比如,基础研究多基于薄膜电极,其催化剂内部导电性的影响通常可以忽略.而基于实用化的电极则需要负载较厚的催化剂膜以获得更多的活性位,与此同时,其催化剂内部导电性的不利影响将会增大.此外,物质传递方面也会出现类似的情况.因此,一些在基础研究中显示出高本征活性的催化剂,在更加接近实际应用的体系下难以表现出预期的高活性.对于这一问题,目前鲜有相关的研究报道.
基于上述分析,本文报道了一种经济且环保的方法,以制备珊瑚状的FeNi(OH)x/Ni催化剂.在碱性条件下,该催化剂具有同时催化OER和HER,从而实现全水分解的能力.在催化剂的制备过程中,具有高本征活性的FeNi(OH)x纳米片借助Fe(NO33对Ni温和的腐蚀过程,被原位负载到珊瑚状镍骨架上.这些纳米片与电沉积制备的珊瑚镍骨架以及3D泡沫镍基底一起构成了一体化的析气电极.这样的电极结构有助于暴露活性位、电解质快速传递和气体产物的迅速释放.此外,与珊瑚状金属镍骨架的复合也有利于减轻较厚的催化剂薄膜所带来的导电性降低的负面影响.在1.0 mol L-1 KOH溶液中,以FeNi(OH)x/Ni同时作为阳极和阴极而构建的对称电解槽表现出了优异的催化活性,只需要施加1.52 V的槽压即获得10 mA cm-2的催化电流密度.其活性甚至优于当前最佳的由贵金属催化剂RuO2和Pt/C构建的非对称电解槽所表现出来的活性(10 mA cm-2的槽压为1.55 V).本文提供了一种简便易行且十分可靠的制备更加实用、具有潜力且可负担的水分解装置的策略.
非负载纳米多孔钯催化喹啉及其衍生物的化学选择性氢化反应:H2分子异裂
卢烨, Yoshinori Yamamoto, Abdulrahman I. Almansour, Natarajan Arumugam, Raju Suresh Kumar, 包明
2018, 39(11): 1746-1752  doi: 10.1016/S1872-2067(18)63151-1
[摘要]  (66) [HTML全文] (66) [PDF 692KB] (66)
摘要:
纳米多孔金属是近十年发展起来的一类具有三维通孔结构的新型功能材料,其由纳米尺度的细孔和韧带构成,具有极大的比表面积;它还是一种无毒无载体的宏观材料,并且易制备、易回收和重复利用,因此作为高效的非均相催化剂已逐渐引起人们的重视.
1,2,3,4-四氢喹啉是许多医药、农药、染料和天然产物的重要骨架.通过喹啉及其衍生物的选择性加氢反应制备1,2,3,4-四氢喹啉,具有原子利用率高和原料易得等优点.在过去,已经开发了许多类型的均相和非均相催化体系,并成功地用于催化喹啉及其衍生物的选择性加氢反应.尽管非均相催化体系具有诸多优点,但仍存在H2压力(10-50 atm)和反应温度(60-150℃)相对较高的缺点.因此,开发更加温和条件下的喹啉及其衍生物的选择性加氢反应具有重要意义.此外,在喹啉及其衍生物的加氢反应过程中,H2分子在非均相催化剂表面的裂解模式,即均裂还是异裂尚不清楚.因此,本文采用新型非均相催化剂纳米多孔钯,研究了喹啉及其衍生物的选择性加氢反应,在相对较低的H2压力(2-5 atm)和温度(室温-50℃)下实现了目标反应,高收率、高选择性地得到1,2,3,4-四氢喹啉化合物.
在最佳反应条件下,对底物的适用范围进行了考察.结果表明,各种含喹啉结构单元的化合物均能顺利发生反应,产物收率在62%-95%.而且该反应对甲基、甲氧基、羟基、酯基、醛基、酰胺基、卤素(F,Cl和Br)等官能团具有较好的兼容性.苯环上取代基的电子效应对反应有一定的影响,吸电子基有利于目标反应的进行.
反应完成后,纳米多孔钯催化剂很容易回收,且循环使用多次后,仍未见催化活性降低.扫描电镜和透射电镜结果发现,循环使用后的纳米多孔钯催化剂结构没有发生明显改变,表明其结构稳定.浸出实验结果证明,没有钯原子浸出到反应液中,表明该纳米多孔钯催化反应属于多相催化过程.喹啉的选择性氢化反应被放大到克级的规模时,目标产物的收率仅略有降低,说明该方法具有很好的实用性.通过动力学实验发现,随着反应的进行,反应速率不断加快,表明反应过程中生成的乙胺和1,2,3,4-四氢喹啉同样扮演着路易斯碱性添加剂的角色,促进了反应的进行.通过反应机理研究,揭示了H-H键在纳米多孔钯表面发生了异裂,原位形成的Pd-H物种作为弱亲核试剂,对目标反应的选择性控制起到了至关重要的作用.
非金属光敏剂石墨烯量子点与磷化镍耦合用于可见光光催化制氢
祝亮, 岳秋地, 江道传, 陈涣淋, Rana Muhammad Irfan, 杜平武
2018, 39(11): 1753-1761  doi: 10.1016/S1872-2067(18)63135-3
[摘要]  (79) [HTML全文] (79) [PDF 787KB] (79)
摘要:
利用光催化反应制取氢气是满足未来能源可持续利用的一个很有效的方法.然而,如何去开发和利用高效且稳定的非金属光催化剂用于产氢反应是目前所面临的一个巨大的挑战.最近,非金属纳米碳基材料由于其诸多优点而吸引了人们广泛的关注,比如价格低廉、环境友好和良好的稳定性等.另外,石墨烯量子点由于具有很好的水溶性、低毒性,良好的生物兼容性和很好的光学稳定性等优点而被当作是一种能够替代传统量子点的很有前途的材料.除此之外,石墨烯量子点的带隙还可以通过控制其颗粒大小和其表面所带的官能团来进行灵活调控.另一方面,金属磷化物(磷化镍、磷化钴等)已经被证实了是很好的水分解制氢的非贵金属助催化剂,它们可以加快光生电子和空穴的分离,从而提高光催化活性.
本文利用非金属光敏剂石墨烯量子点与非贵金属助催化磷化镍进行耦合制备复合光催化剂,实现了在可见光照射下进行光催化制氢.在最优条件下,复合光催化剂的产氢速率为空白石墨烯量子点的94倍,甚至与在空白量子点上负载1.0 wt% Pt的产氢速率相当.产氢速率的大幅度提升可能是由于在石墨烯的量子点和磷化镍之间形成了半导体-金属接触界面,从而更有效地促进了光生载流子的传输过程.
石墨烯量子点本身有着很好的水溶性,从而利用机械搅拌的方法与磷化镍进行耦合,并在可见光下进行产氢反应.本文采用红外光谱(FTIR)、透射电镜(TEM)、紫外可见光谱(UV-Vis)和荧光光谱(PL)等表征手段研究了空白量子点表面所带的官能团、尺寸大小和光学性能.采用TEM和PL等表征手段来研究复合光催化剂的形貌和产氢性能提高的原因.
对于空白量子点,FTIR结果表明,其表面带有-OH等官能团;TEM结果表明,它的尺寸大小大概在3.6 ±0.5 nm;UV-Vis结果表明,其在可见光区域有着很强的光吸收;PL结果表明,其在波长约为540 nm处有着很强的吸收峰,所对应的带隙约为2.3 eV.对于复合光催化剂,TEM测试结果表明石墨烯量子点在磷化镍上随机分布;从PL结果可见,复合光催化剂的荧光强度明显降低,说明了光生电子从量子点到磷化镍的有效转移,这也是光催化活性提高的重要原因.
HZSM-35分子筛酸性质对甲缩醛和乙酸甲酯羟醛缩合反应的影响
马占玲, 马现刚, 倪友明, 刘红超, 朱文良, 郭新闻, 刘中民
2018, 39(11): 1762-1769  doi: 10.1016/S1872-2067(18)63145-6
[摘要]  (69) [HTML全文] (69) [PDF 505KB] (69)
摘要:
丙烯酸及其酯是重要的化工原料,广泛应用于涂料、粘结剂、纤维等领域,目前工业上常采用丙烯两段氧化法进行制备,但该法以石油基原料丙烯为源头,采用V/Mo/Bi等金属催化剂,不符合可持续发展理念,且存在环境污染及氧气下产物易过度氧化等问题.如何高效、安全、大规模工业化制备丙烯酸及其酯是研究者追求的目标.以乙酸甲酯(Mac)和甲醛为原料,通过羟醛缩合一步制备丙烯酸及其酯是一条完全不同于丙烯氧化法的合成路径,原料均可由煤基甲醇得到,符合我国“富煤、贫油、少气”基本能源结构,且该方法碳原子利用率为100%,副产物仅为水,属于绿色环保合成路径.
本文以甲缩醛(DMM)为甲醛源,创新性地采用固体硅铝分子筛为酸性催化剂,催化DMM和MAc发生羟醛缩合反应来制备丙烯酸.硅铝分子筛具有较高的活性,可高效地催化羟醛缩合反应,且具有很好的再生性能,即使催化剂寿命较短,也可采用流化床或移动床等反应器进行工业化,因此具有良好的工业化前景.硅铝分子筛中常含有Brönsted酸和Lewis酸,为试图说明羟醛缩合反应的真正活性位点,我们以羟醛缩合反应性能最佳的HZSM-35分子筛为研究目标.
首先,利用红外研究HZSM-35分子筛的酸性质.发现分子筛中桥羟基提供Brönsted酸,外骨架铝物种提供Lewis酸.通过对桥羟基红外峰一阶求导,发现其对称性较差,表明Brönsted酸在HZSM-35分子筛孔道中分布不均匀.利用红外分峰手段,得知约51%的Brönsted酸分布于八元环和六元环交叉所形成的笼(cage)中,约23%分布于十元环孔道,26%分布于八元环孔道中.同时,利用吡啶在分子筛HZSM-35不同温度下的吸附情况验证了这一分峰结果.其次,利用钠离子交换方法制备不同Brönsted酸浓度的ZSM-35分子筛,经吡啶红外表征得知,Brönsted酸浓度随钠离子交换程度增加而逐渐降低,而Lewis酸浓度并未改变;在羟醛缩合反应性能中,丙烯酸及丙烯酸甲酯选择性和收率均随Brönsted酸浓度增加而逐渐升高,考虑到Lewis酸浓度并未变化,可知Brönsted酸是羟醛缩合反应性能的活性位点,其浓度增加有利于羟醛缩合反应性能的提高.同时,对比不同ZSM-35分子筛失活现象,高Brönsted酸浓度时分子筛重积炭量最高,这可能是由于Brönsted催化不饱和产物关环生成芳烃物种或(和)发生氢转移过程所导致.
一种高效稳定的低负载量的氯化-2-羟乙基三甲胺改性钌基催化剂用于乙炔氢氯化反应
李航, 吴博韬, 王建辉, 王富民, 张旭斌, 王刚, 李海朝
2018, 39(11): 1770-1781  doi: 10.1016/S1872-2067(18)63121-3
[摘要]  (82) [HTML全文] (82) [PDF 1527KB] (82)
摘要:
来自煤化工的乙炔氢氯化生产氯乙烯的工艺由于其经济优势成为我国生产PVC的主要路线.Q#8197;为了降低该工艺中汞触媒催化剂对环境的毒害,开发高效环保的乙炔氢氯化无汞催化剂刻不容缓.但已有研究表明,稳定性差和价格高昂成为制约乙炔氢氯化非汞催化剂工业化的瓶颈.由此,我们选用价格低廉、催化活性良好的RuCl3作为催化剂的前驱体,采用浸渍法制备了低负载量的氯化-2-羟乙基三甲胺改性RuCl3的催化剂,其中活性组分在ESI-MS中观测到是一种离子型配合物,其阴阳离子分别为RuCl4-和C5H14NO+.该催化剂在乙炔氢氯化反应中的测试结果表明,氯化-2-羟乙基三甲胺的加入可以显著提高催化活性和稳定性.通过透射电镜(TEM)和扫描-透射电镜(STEM)表征表明,该催化体系的活性组分具有良好的分散性,季铵盐[Me3NCH2CH2OH]Cl不仅与RuCl3形成配合物为活性组分,其过量时也提供了一个溶剂环境,能够稳定活性组分不团聚.透射电镜和X射线光电子能谱(XPS)结果共同表明,相比于单一负载的RuCl3催化剂,该催化体系中Ru物种基本保持在+3氧化态,不易在制备过程中被氧化或在反应过程中被还原性气体乙炔还原为金属颗粒,表现出了良好的稳定性.程序升温脱附(TPD)结果表明,氯化-2-羟乙基三甲胺这一季铵盐的加入能够大幅度提升体系对氯化氢的吸附,降低体系对乙炔和产物氯乙烯的吸附,从而促进乙炔氢氯化反应的进行,减少体系吸附乙炔或氯乙烯过强导致的积炭现象.另一方面,本工作中采用密度泛函理论方法研究了乙炔氢氯化非汞催化剂的性质、催化剂与反应物的吸附和相互作用模式.其中吸附能的计算结果表明,活性组分和季铵盐都能够提升对氯化氢的吸附,季铵盐还能够抑制体系对乙炔的吸附,计算结果与TPD的结果基本一致.对反应物和催化剂之间的相互作用进行了考察,发现该体系对氯化氢存在一个协同活化的作用,能够促进H-Cl共价键的异裂,有利于跨越传统催化剂对氯化氢吸附和活化的障碍.此外,该催化体系对乙炔氢氯化过程也展现了一个协同催化的模式,为乙炔氢氯化无汞非均相催化剂的设计提供了参考.
底物与条件控制苯胺与丙烯醛/烯酮的化学选择性偶联反应
周旭凯, 孙佳琼, 李兴伟
2018, 39(11): 1782-1791  doi: 10.1016/S1872-2067(18)63134-1
[摘要]  (52) [HTML全文] (52) [PDF 646KB] (52)
摘要:
金属催化碳氢键活化已经成为制备高附加值有机化合物的一类高效方法,由于碳氢键广泛存在,所以对它们进行化学、区域、立体选择性的活化作为一大挑战已经被人们日益所关注,然而氧化还原选择性控制的研究十分少见.通常而言,有机氧化还原反应定义为得失氢氧原子,例如消除氢负离子为氧化反应,而失去一个质子则为中性反应.在已有的研究中单独的氧化、还原反应已经被广泛研究,而且被大量用于医药合成、精细化工品的制备以及各类先进材料的生成.但是在同一反应体系下同时调控三种氧化态的研究目前未见报道,因此发展这类选择性控制的反应十分重要.我们此前已经实现了Rh(Ⅲ)/Ir(Ⅲ)催化苯胺和烯酮还原偶联合成四氢喹啉和高烯丙基苯胺两种产物,同时也能得到中性的1,2-二氢喹啉产物.在此工作的基础上,我们希望能够进一步实现相同反应组分的氧化偶联.为此,我们仔细分析取代的苯胺与烯酮的可能反应路径,发现可能的关键物种G—含有Rh(Ⅲ)的六元杂环中间体有望实现这类氧化过程,当用丙烯醛做底物时,物种G有可能实现β-氢消除得到氧化的二氢喹啉酮和Cp*RhXH,通常Cp*RhXH很容易发生自身的还原消除得到Cp*Rh(I)使反应终止,但是,丙烯醛的存在有可能重新活化Cp*RhXH使得催化循环一直进行下去.另一种情况是中间体G发生质子解然后脱水得到亚胺物种,亚胺很容易被亲核试剂进攻得到中性的氮杂缩醛类产物.当然,外加银盐氧化剂还有可能得到另一种氧化型的喹啉盐.
基于这种思路,我们发展了Rh(Ⅲ)-催化碳氢活化N-取代的苯胺与丙烯醛/烯酮的选择性偶联反应,反应可以化学选择性专一地制备三类不同的杂环化合物.当氮-吡啶基苯胺与丙烯醛反应时,反应类型为氧化过程,经历了转移氢化的过程,其中烯醛为主要的氢受体,得到二氢喹啉酮产物;如果定位基换成嘧啶时,在相似的反应条件下,反应类型为氧化还原中性过程,生成氮杂缩醛醚类产物;氮-吡啶基苯胺和烯酮反应在AgBF4的氧化作用下同样可以发生氧化反应得到喹啉盐类化合物.至此,我们实现了导向基团对氧化反应和中性反应的控制,氧化剂的种类对反应路径的改变.反应的底物范围广泛,官能团容忍性好,我们期待这类氧化还原多样性的杂环合成方法能促进更多新颖反应的发现.
离子刻蚀法制备具有高效催化性能的m-Bi2O4/BiOCl p-n异质结催化剂
王隽秀, 张振宗, 汪曦, 沈奕, 郭永福, Po Keung Wong, 白仁碧
2018, 39(11): 1792-1803  doi: 10.1016/S1872-2067(18)63142-0
[摘要]  (85) [HTML全文] (85) [PDF 1216KB] (85)
摘要:
光催化技术作为一种绿色的环境修复方法而备受关注,它直接利用太阳光作为能源,可有效地降解有机污染物.铋系化合物具有化学稳定性强、抑制光腐蚀、无毒和来源广泛等优点,被认为是一种环境友好的光催化剂,广泛用于降解染料、苯酚和其他有机污染物.BiOCl具有独特的内部结构,可形成内电场促进电子和空穴的移动,抑制其复合.但是BiOCl本身带隙能过大,只能被紫外光激发,对光的利用率较低,限制了其在环境治理中的应用.近两年来发现,m-Bi2O4带隙能小,可吸收大波长的可见光,催化性能好.为充分发挥m-Bi2O4的优异性质,改善BiOCl的性能,本文将BiOCl与m-Bi2O4复合制得新型催化剂,降低催化剂的带隙能,增强对光的吸收,提高量子效率,促进光生载流子的分离,抑制电子-空穴复合,从而提高催化剂性能,加速降解反应进程.
本文通过离子刻蚀法制备具有p-n异质结的m-Bi2O4/BiOCl复合催化剂,通过调节HCl的加入量制得不同比例的催化剂,并考察了其在可见光下催化降解MO(甲基橙)的性能.结果表明,m-Bi2O4/BiOCl复合催化剂在可见光下表现出优异的光催化降解MO和四环素的性能,反应10内min可降解95%的MO,反应150min内四环素的降解率为85.5%;该复合催化剂对MO和四环素的光降解效率分别是纯BiOCl的52.3和4.9倍.活性自由基捕获实验表明,空穴在光催化降解过程中起最主要的作用,其次是超氧自由基,羟基自由基对降解反应也起到一定的作用.
采用XRD,SEM,EDS,TEM,SAED,FT-IR,Raman,XPS,BET,UV-vis和光电流等表征方法分析了催化剂的结构、形貌、化学组成、元素价态、孔结构、带隙能、光学性质和载流子复合效率.结果表明,与BiOCl的斜四方体相比,m-Bi2O4/BiOCl复合催化剂呈现纳米片状结构,氯离子进入晶格的内部,颜色也由BiOCl原来的深褐色变为黄色.m-Bi2O4/BiOCl为介孔结构,比表面积为112.90m2/g,其吸收波长红移,由紫外光扩展至可见光区域,带隙能也由3.2降低为1.87eV,能带弯曲形成p-n异质结,提高了电子-空穴的转移效率,抑制其复合;m-Bi2O4/BiOCl的光电流密度高于m-Bi2O4和BiOCl,电子-空穴的分离效率更高,因而其催化性能更优越.
WO3改性CeO2-TiO2催化剂的低温NH3-NO/NO2 SCR活性和机理研究
陈磊, 翁鼎, 汪家道, 翁端, 曹丽
2018, 39(11): 1804-1813  doi: 10.1016/S1872-2067(18)63129-8
[摘要]  (74) [HTML全文] (74) [PDF 712KB] (74)
摘要:
在铈钛基NH3-SCR催化材料中,改性元素对催化材料的酸性位和氧化还原性能的影响较大。本文采用过量浸渍法分别制备了CeO2-TiO2(CeTi)和CeO2/WO3-TiO2(CeWTi)催化剂,研究了CeWTi催化材料结构、酸性位及氧化还原性能对NH3-NO/NO2 SCR反应性能的影响.结果发现,CeTi和CeWTi样品均有较优异的NH3-NO/NO2 SCR催化性能,后者略高.WO3的加入增加了催化材料的表面酸性,对其氧化还原性能影响不大.通过对反应中间物种NH4NO3的研究,发现NH4NO3的分解主要与氧化还原性能相关,而NO还原NH4NO3的反应需要氧化还原能力和酸性位共同作用,即在氧化还原性能差异不大的条件下,酸性对该反应起到重要作用.而该反应也是NH3-NO/NO2 SCR的限速步骤,这是CeWTi催化材料活性高于CeTi催化材料的原因.
同时,为了获得NH3-NO/NO2 SCR反应的高活性,NO2:NO比例宜为1:1.然而现实情况中,预氧化催化材料的氧化活性、NOx浓度、温度等变量使得准确控制NO2的比例较难,因此,深入了解NO2浓度对NH3-NO/NO2 SCR反应的影响至关重要.本文探讨NO2:NO的比例、O2浓度等对NH3-NO/NO2 SCR反应性能的影响;并研究了不同NO2含量条件下NH3-NO/NO2 SCR反应网络.通过分析CeWTi材料上NH3-NO/NO2 SCR反应网络可知,当NO与NO2比例为1:1时,NH3-SCR催化活性最高,并以快速SCR形式进行;当NO与NO2比例为1:1消耗完全之后,剩余的NO或NO2各自独立以标准或慢速SCR进行,不影响其本来的反应活性.催化材料的标准SCR、快速SCR和慢速SCR均取决于材料表面酸度和氧化还原性能,但快速SCR和慢速SCR对材料这两方面性能的要求相对较低.同时O2并不参与快速和慢速SCR,而NO2可以取代O2作为SCR反应中主要的氧化剂,氧化Ce4+为Ce3+,甚至比O2和NO再氧化活性位的能力更强,保持催化材料的高催化活性.低温条件时,慢速SCR和快速SCR反应均在材料表面生成硝酸铵中间物种,但由于慢速SCR气氛中缺乏NO将硝酸铵还原,进而引发快速SCR反应,因此材料表面快速SCR的NOx转化率要高于慢速SCR反应;高温条件下,由于硝酸铵容易热分解,导致硝酸铵的抑制效应不太明显.NH4NO3分解是NO2含量升高后N2O的形成的主要途径.
纳米钒铬复合氧化物的溶剂热合成、表征及催化2,6-二氯甲苯氨氧化反应
黄业迎, 李廷成, 尤庆亮, 游向前, 张倩, 张道洪, 谢光勇
2018, 39(11): 1814-1820  doi: 10.1016/S1872-2067(18)63119-5
[摘要]  (64) [HTML全文] (64) [PDF 681KB] (64)
摘要:
甲基芳烃气相氨氧化反应制备对应的芳香腈被认为是丙烯氨氧化制备丙烯腈之后化工领域又一重大进展,芳香腈是重要的精细化学品,广泛应用于医药、农药、颜料、染料、橡胶、光电材料等领域.其中2,6-二氯甲苯氨氧化反应制备2,6-二氯苯腈是特别重要的反应,2,6-二氯苯腈工业上可用于制备高效除草剂、杀菌剂及各种特种工程塑料;然而相较于其它的甲基芳烃,2,6-二氯甲苯由于甲基邻位有两个较大位阻且较强吸电子的氯原子影响,甲基活性较低,较难发生氨氧化反应,原料转化率和产品收率均较低.本课题组一直致力于发展高活性和选择性的氨氧化催化剂以及有效的策略实现甲基芳烃高效转化为芳香腈,我们曾以硅胶负载的钒磷氧化物(VPO/SiO2)和钒铬氧化物(VCrO/SiO2)为催化剂,成功实现了2,6-二氯甲苯氨氧化反应制备2,6-二氯苯腈.
钒铬复合氧化物(VCrO)具有广泛的应用,可用于多相催化、气体传感、能量储存等领域.VCrO通常通过高温固相反应制备,然而一般得到的是混合相,产品形态和颗粒大小也不能很好控制;当用于氧化或氨氧化反应时,需要较高的反应温度,原料也容易发生过度氧化,导致积碳及活性降低.
我们以V2O5和CrO3为原料,在醇或者醇水溶液中于180℃进行溶剂热反应制备了无定形的VCrO前驱体,然后将前驱体在不同温度下氮气气氛中煅烧,产品通过粉末X射线衍射、透射电镜和X射线光电子能谱等进行表征.当以甲醇或甲醇水溶液为溶剂热反应介质,并且前驱体700℃进行煅烧后,产品为纯的正交晶系CrVO4纳米晶相;当以甲醇为溶剂时,CrVO4晶相的尺寸大约为500nm;而改为甲醇水溶液为溶剂时,产品尺寸急剧减小到50nm以下,而且通过改变甲醇和水的体积比分别为10:1,5:1,1:1和1:5时,CrVO4纳米晶相的尺寸从50nm逐渐减小到30,20和10nm,能够进行有效调控.据我们所知,这是首次合成纯的CrVO4纳米晶相.我们以该纳米CrVO4为催化剂催化2,6-二氯甲苯氨氧化反应制备2,6-二氯苯腈,在335℃的相对较低温度下反应,原料转化率为84%,产品收率为75%;进一步升高温度到390℃,原料转化率为99%,产品收率可达81%.在所有已报道的二元复合氧化物催化剂中,纳米CrVO4显示了最高的催化活性,主要归功于它较小的粒子尺寸、较大的表面积和更多暴露的活性中心.
通过SAPO-34分子筛笼中引入金属物种提升甲醇制烯烃反应中乙烯选择性
钟家伟, 韩晶峰, 魏迎旭, 徐舒涛, 孙毯毯, 郭新闻, 宋春山, 刘中民
2018, 39(11): 1821-1831  doi: 10.1016/S1872-2067(18)63141-9
[摘要]  (81) [HTML全文] (81) [PDF 748KB] (81)
摘要:
低碳烯烃(乙烯、丙烯)是化学工业极其重要的基本原料.甲醇制烯烃(MTO)反应是重要的烯烃生产石油替代路线.其中,磷酸硅铝类SAPO-34分子筛在MTO反应中表现出优异的低碳烯烃选择性.与丙烯相比,乙烯具有更高的经济附加值,因此提升MTO反应中乙烯的选择性有着重要的意义.
本文采用传统离子交换法(CIE)、模板辅助离子引入法(TⅡ)和醇相离子交换法(AIE)对SAPO-34分子筛进行金属Zn、Cu改性,利用多种表征手段对金属Zn、Cu改性SAPO-34分子筛的物理结构、化学组成、金属物种状态与分布、酸性及扩散性质等进行表征.
首先,对金属Zn、Cu改性SAPO-34分子筛的物理结构和化学组成进行分析.X射线衍射表明,相比AIE法,CIE法和TⅡ法改性基本保持SAPO-34分子筛的结晶度.X射线荧光分析表明,相比Co、Ni,金属Zn、Cu更易引入SAPO-34分子筛.N2物理吸附-脱附表明,CIE法改性能够保持SAPO-34分子筛的BET比表面积和微孔孔容.其次,考察了金属Zn、Cu改性SAPO-34分子筛中金属物种的状态.氢气-程序升温还原(H2-TPR)和X射线光电子能谱(XPS)结果表明,Zn物种主要以孤立态的Zn2+阳离子形式存在.H2-TPR、XPS、紫外-可见光谱和电子顺磁共振谱结果表明,Cu物种主要以孤立态的Cu2+阳离子以及部分CuO形式存在.继而对金属Zn、Cu改性SAPO-34分子筛中金属物种的分布进行表征.XPS表明,Zn阳离子改性的SAPO-34表层富硅、富Zn,呈类核壳结构;XPS和扫描式电镜-能量色散X射线光谱结果表明,Cu物种在Cu改性SAPO-34分子筛中均匀分布.进一步研究了金属Zn、Cu改性SAPO-34分子筛中酸性的变化.氨气-程序升温脱附和核磁共振氢谱结果表明,Zn、Cu改性SAPO-34酸性位点的酸量降低.最后,对金属Zn、Cu改性SAPO-34分子筛的扩散性质进行分析.智能重量分析表明,Zn、Cu阳离子的引入降低探针分子(乙烷、丙烷)的扩散系数,推断Zn、Cu阳离子的引入增加对MTO反应产物的扩散限制.热重表明,Zn阳离子改性SAPO-34分子筛反应初期积炭量略微增加.
综上所述,Zn阳离子改性SAPO-34催化剂表层富硅、富Zn,呈现类核壳结构.Zn阳离子的引入增加对MTO反应产物的扩散限制,而且Zn阳离子的引入促进MTO反应初始阶段的碳沉积.因此,Zn阳离子改性SAPO-34分子筛显著增加MTO反应产物的扩散限制,对分子尺寸较大的反应产物的扩散限制更为明显,从而提高MTO反应初始阶段的乙烯选择性,增大乙烯/丙烯比.
水滑石与海泡石复合材料对有机染料的光催化降解性能
金力, 曾虹燕, 徐圣, 陈超容, 段恒志, 杜金泽, 胡果, 孙云鑫
2018, 39(11): 1832-1841  doi: 10.1016/S1872-2067(18)63120-1
[摘要]  (73) [HTML全文] (73) [PDF 946KB] (73)
摘要:
由于ZnCr-LDH纳米粒子具有良好的光催化性能,但极易团聚,在一定程度上制约了它在光催化领域的应用.将水滑石制成核-壳复合材料可以避免粒子团聚,改善其单分散性和稳定性,从而提高光催化活性.本文设计了一种水滑石/海泡石(Sep@LDH)纳米复合材料作为光催化剂,以甲基橙(MO)和亚甲基蓝(MB)混合溶液模拟有机染料废水,进行光催化反应.通过XRD,SEM,UV-Vis DRS,PL,TG-DTG和BET/BJH,证明了水滑石成功的生长在海泡石的表面,通过光催化实验详细研究了Sep@LDH纳米复合材料的光催化性能及光降解反应机理.
采用共沉淀制备了不同Zn/Cr摩尔比的水滑石纳米材料,对水滑石进行优化,结合表征分析,发现摩尔比为1的ZnCr-LDH其结晶度、层间规整度高,禁带宽度最窄(2.30eV)和光致发光性能最佳.因而用作后续复合材料的制备.
另一方面,我们以酸活化的海泡石(Sep)为载体,采用原位生长法成功制备了一种新型的水滑石/海泡石(Sep@LDH)光催化剂,研究了海泡石的添加量对复合材料性能的影响.结果表明,Sep含量对复合材料形貌、粒径大小、结构以及光学性质影响较大.其中,样品Sep4@LDH(海泡石添加量为4g),比表面积最大,因而光催化效率最高.降解动力学结果表明,染料的光降解过程遵循准一级动力学模型.
我们通过对活性物种(·OH,h+,·O2-)的考察,研究了光催化降解机理.结果表明,·OH在光降解过程中起着至关重要的作用.Sep4@LDH复合材料循环使用5次后,MO和MB的光降解率依然分别可以达到86.2%和84.9%,表现出较高的稳定性.
一步法制备铁氧化物/氮改性氧化石墨/碳纳米管异质结及其用于催化活化过一硫酸氢钾降解亚甲基蓝模型染料
赵鑫, 安庆大, 肖作毅, 翟尚儒, 施展
2018, 39(11): 1842-1853  doi: 10.1016/S1872-2067(18)63114-6
[摘要]  (45) [HTML全文] (45) [PDF 2583KB] (45)
摘要:
随着较差的生物相容性和更高毒性有机染料的应用,如酚类化合物和抗生素,水污染和食品污染变得极其严重.这不仅危害人类健康,而且严重污染自然环境.过硫酸盐去污技术利用自由基活化降解过程,成为处理一系列污染物非常有效的方法;然而设计具有多功能性的高性能催化剂仍然面临着巨大的挑战.因此,本文借鉴铁基材料、氮改性石墨和碳纳米管独特的物化性质,以尿素、铁盐、氧化石墨、碳纳米管为原材料,通过一步水热法成功制备了三维多功能铁氧化物/氮改性氧化石墨/碳纳米管异质结,用作活化过一硫酸氢钾复合盐以降解有机模型污染物亚甲基甲蓝(MB),研究了高级氧化法(AOPs)作用机理和优化反应条件.XRD、红外光谱、SEM和XPS结果表明,铁氧化物通过物理静电作用力和化学键结合力已经被牢牢固定在了氮修饰的氧化石墨结构框架内.当加入了碳纳米管之后,它会与石墨形成类似于互穿聚合物网络的结构,从而具有三维材料的优点,且提升电子转移电导率,使得催化剂的结构和性能有了很大的改善.此外,优化了降解系统、PMS负载量、初始有机污染物浓度和催化剂用量等因素.结果表明,处于催化剂/PMS系统时,亚甲基蓝可以在12min之内有效地完全降解,可归结于碳、氮以及主要活性物质铁氧化物之间的协同作用.基于数据拟合分析,污染物氧化降解系统与拟一阶动力学相符合,其速率常数约为0.33min-1.淬灭实验证明,硫酸根自由基和羟基自由基是主要的反应活性物种.这种同时富含铁/氮分级的多孔碳骨架异质结物质不仅可用作过渡金属催化剂,而且为制备其他异质结提供参考,以用于超级电容器、储能材料、电催化剂等领域.
基于两性离子型季铵盐-KI的温度控制自分离离子液体(IL)催化体系用于二氧化碳固定反应
付西英, 谢鹏涛, 连一苇, 何乐芹, 赵伟, 常涛, 秦身钧
2018, 39(11): 1854-1860  doi: 10.1016/S1872-2067(18)63101-8
[摘要]  (61) [HTML全文] (61) [PDF 483KB] (61)
摘要:
随着在世界各国工业化进程不断加快,人类对煤、石油、天然气等化石燃料的需求越来越大,既加速了能源短缺,又排放了大量CO2.CO2又成为分布最广、价格便宜和储量丰富的碳资源.人类除了努力做到CO2减排,又可将其转化为能源、材料和各种化工产品.CO2与环氧化合物发生偶联反应生成环碳酸酯,具有原子经济性,符合绿色化学的观点,是最有前景的方法之一.CO2可以与三元环氧化合物发生偶联反应生成五元环状碳酸酯,它是当今合成环碳酸酯比较成熟的方法.已经被设计合成并应用的高效催化体系有离子液体催化剂、金属盐或氧化物催化剂、有机催化剂、希夫碱金属配合物催化剂以及大环金属配合物催化剂等等,但最有效的催化剂还是均相催化剂,其最大的缺点在于催化剂和产物分离困难.既有均相催化剂高的催化活性,又能像多相催化剂易于分离,是人们设计新催化剂的目标.
本文设计合成了一系列含有不同烷基链长度的两性离子型季铵盐(ZTQAs),可以与KI协同催化CO2与环氧化合物偶联反应.随着烷基链的增长,ZTQAs在碳酸丙烯酯中表现出温度调控的自分离特性.通过X射线光电子能谱和量子化学计算证实,ZTQAs与KI之间存在明显的相互作用,从而增强了碘离子的亲核能力.当反应条件为125℃,CO2压力1.5MPa以及1mol%催化剂用量下,DTPS/KI催化剂取得了良好的收率(95.1%).并且该催化剂可以从催化系统中自发的析出,因而既表现出均相催化剂的高活性,又可以像非均相催化剂那样循环使用.该催化剂催化各种环氧化合物与CO2偶联反应中均显示出良好的催化性能.