应用化学   2016, Vol. 33 Issue (6): 668-676   PDF    
Article Options
  • PDF
  • Full Text HTML
  • Abstract
  • Figures
  • References
  • History
  • Received: 2015-09-02
  • Revised: 2015-11-02
  • Accepted: 2015-12-10
  • 扩展功能
    把本文推荐给朋友
    加入引用管理器
    Email Alert
    RSS
    本文作者相关文章
    张瀚匀
    刘曼赟
    严刚
    石德清
    含芳氧乙酰基和间-三氟甲基苯基的双酰胺化合物的合成及其除草活性
    张瀚匀, 刘曼赟, 严刚, 石德清     
    华中师范大学农药与化学生物学教育部重点实验室, 化学学院 武汉 430079
    摘要: 通过组合不同除草作用机制的活性基团,采用芳氧乙酸为酸组分的Ugi四组分反应合成了一系列芳氧乙酰基和间三氟甲基苯基片段的双酰胺化合物3a~3v,采用IR、1H NMR、EI-MS和元素分析等技术手段对其结构进行了表征。温室盆栽测试结果表明,部分目标化合物对油菜、反枝苋、稗草和马唐表现出中等至良好的除草活性,如化合物3r在温室盆栽时, 在1.5 kg/ha剂量下,在苗前处理时对反枝苋和马唐显示出100%的抑制活性;在苗后处理时对马唐显示出100%的抑制活性。初步探讨了目标化合物的构效关系。
    关键词: 双酰胺     取代苯氧乙酸     八氢番茄红素脱氢酶抑制剂     Ugi反应     除草活性    
    Synthesis of Diamides Containing of 2-Aryloxyacetyl and meta-Trifluoromethylphenyl Moieties and Their Herbicidal Activity
    ZHANG Hanyun, LIU Manyun, YAN Gang, SHI Deqing     
    Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
    Abstract: Based on the combination of different active groups with different herbicidal modes of action, a series of diamide compounds 3a~3v containing of 2-(aryloxy)acetyl and meta-trifluoromethylphenyl moieties were designed and synthesized via the four-component Ugi reaction. Their structures were characterized by IR, 1H NMR, EI-MS, and elemental analyses. The glass house bioassay(in vivo) shows that some of compounds 3 exhibit moderate to good herbicidal activities against B.campestris, A.retroflexus, E.crusgalli, and D.sanguinalis at a dose of 1.5 kg/ha. For example, compound 3r displays 100% inhibition aganist both of A.retroflexus and D.sanguinalis in the pre-emergence treatment, it also exhibits 100% inhibition aganist D.sanguinalis in the post-emergence treatment. In addition, the preliminary structure-activity relationships are also discussed.
    Key words: diamide     aryloxy acetic acid     phytoene desaturase inhibitor     Ugi reaction     herbicidal activity    

    苯氧羧酸除草剂广泛用于在粮食作物中阔叶杂草的防除,具有高效、高选择性、杀草谱广、价格低廉等优点[1],但由于持续大剂量的使用,这类除草剂对作物会产生药害[2]。另一方面,八氢番茄红素脱氢酶(PDS)是一类重要的除草剂作用靶标,其中不少抑制剂已成功开发成商品化的除草剂品种(见图 1)[3-7],人们在进行构效关系研究时发现,这些除草剂分子均含有3-三氟甲基苯基这个共同的结构特征。在世界除草剂市场,目前销售除草剂大约有300种,而它们的作用靶标却不足20种,尤其是作用于光系统Ⅱ(PSII)、乙酰乳酸(ALS)或乙酰羟酸合成酶(AHAS)、乙酰辅酶A羧化酶(ACCase)和原卟啉原氧化酶(PPO)的除草剂就占50%之多,而近年来开发的除草剂新品种也多为AHAS和PPO抑制剂。由于作用靶标相同或相近的除草剂被人们反复使用或大剂量使用,导致杂草对除草剂的抗性发展日益严重,其中杂草对AHAS、ACCase和Triazines类除草剂的抗性增长最为迅速[8]。因此,研究发现高效低毒、作用方式新颖、低抗性的除草剂具有十分重要的现实意义。

    图 1 一些商品化的PDS抑制剂的结构 Fig. 1 The structures of some of commercial PDS inhibitors

    众所周知,在新农药研发中,先导结构的发现是新药研究中最为关键的环节之一。先导结构的发现通常有:随机合成与筛选、天然产物的结构修饰、与商品化农药相类似结构的合成(类同合成)又称化学“me too”、中间体衍生法、组合合成(多样性合成)和基于靶酶结构或作用机制的生物合理设计等方法。而基于靶酶结构的农药分子设计, 需要在靶酶和抑制剂分子结构清楚的前提下才能有效开展。据统计,随机合成与筛选、类同合成或化学“me too”依然是目前发现先导结构最为有效方法之一[9-11]。多组分反应可快速实现多样性结构的分子合成,以期满足活性筛选和结构修饰的需求,已成为发现生物活性先导结构的有效途径之一[12-15]。最近,我们采用具有除草活性的芳氧丙酸、嘧啶氧基苯酸或取代苯甲酸为酸组分,利用Ugi四组分反应合成了一系列双酰胺化合物,部分化合物显示出较好的除草活性[16];为了深入研究化合物的结构和除草活性关系,本文采用芳氧乙酸为酸组分,利用Ugi反应合成了一系列含芳氧乙酰基和间-三氟甲基苯基的二酰胺化合物3a~3v(Scheme 1),并对它们进行了除草活性筛选和评价。

    Scheme 1 The synthetic route of target compounds 3a~3v
    1 实验部分
    1.1 仪器和试剂

    Varian MERCURY-PLUS 400型和MERCURY-PLUS 600型超导核磁共振仪(美国Varian公司),以CDCl3为溶剂,TMS为内标;Finnigan TRACE-MS型质谱仪(英国Finnigan公司);Nicolet AVATAR360型傅里叶红外光谱仪(美国Nicolet公司),KBr压片;Elementar Vario EL III CHNSO型元素分析仪(德国Elementar公司);X-4型数字显微熔点测定仪(北京泰克仪器有限公司)。试剂为分析纯或化学纯。所用溶剂均用常法干燥,用前进行重蒸处理。中间体2-取代苯氧乙酸和环己基异腈按文献[17-18]方法制备。

    1.2 目标产物3的合成

    将3-三氟甲基苯胺(0.17 g,1.05 mmol)、芳香醛(1.0 mmol)和无水甲醇(10 mL)加入至25 mL圆底烧瓶中,搅拌下缓慢依次加入取代苯氧乙酸(1.0 mmol)和环己基异腈(0.11 g,1.0 mmol),在室温下搅拌5~8 h直至反应完全。析出的固体经过滤后,用无水甲醇洗涤,烘干,得纯品。

    化合物3a(Ar1=4-Cl-C6H4,Ar2=2-CH3-C6H4):白色固体,产率86%,mp 245.1~246.2℃。1H NMR(600 MHz,CDCl3),δ:7.52(d, J=7.2 Hz,1H,ArH),7.28~7.38(m,3H,ArH),7.17(d, J=8.4 Hz,2H,ArH),7.07~7.10(m,2H,ArH),7.03(d, J=8.4 Hz,2H,ArH),6.86(t, J=7.2 Hz,1H,ArH),6.59(d, J=8.4 Hz,1H,ArH),6.08(s,1H,CH),5.52(d, J=7.8 Hz,NH),4.40(s,2H,CH2),3.76~3.81(m,1H,CH),2.18(s,3H,CH3),0.99~1.97(m,10H,CH2);IR(KBr),σ/cm-1:3447(NH),3265(NH),3083,2932,2856,1685 (CO),1645(CO),1610,1565,1492,1449,1325,1261,1127,1068;MS(EI, 70 eV), m/z:558(M+,2.5),433(12.0),326(8.9),283(22.8),125(20.5),121(100),91(47.6);元素分析(C30H30ClF3N2O3计算值)/%:C 64.61(64.46), H 5.50(5.41),N 4.92(5.01)。

    化合物3b(Ar1=4-CH3O-C6H4,Ar2=2-CH3-C6H4):白色固体,产率79%,mp 245.2~246.6℃。1H NMR(400 MHz,CDCl3),δ:7.48(d, J=7.2 Hz,1H,ArH),7.27~7.44(m,3H,ArH),7.09(d, J=7.8 Hz,2H,ArH),6.97(d, J=8.4 Hz,2H,ArH),6.85(t, J=7.6 Hz,H,ArH),6.69(d, J=9.2 Hz,2H,ArH),6.60(d, J=8.0 Hz,1H,ArH),6.11(s,1H,CH),5.45(d, J=7.6 Hz,1H,NH),4.39(s,2H,CH2),3.73~3.78(m,1H,CH),3.71(s,3H,CH3),2.14(s,3H,CH3),0.98~1.97(m,10H,CH2);IR(KBr),σ/cm-1:3445(NH),3272(NH),3085,2934,2860,1681(CO),1642(CO),1609,1568,1490,1445,1328,1266,1126,1064;MS(EI, 70 eV), m/z:554(M+,1.9),428(11.5),322(15.8),278(14.9),121(100),91(48.0);元素分析(C31H33F3N2O4计算值)/%:C 67.03(67.14),H 5.95(6.00),N 5.17(5.05)。

    化合物3c(Ar1=4-Cl-C6H4,Ar2=4-CH3-C6H4):白色固体,产率83%,mp 236.0~236.9℃。1H NMR(600 MHz,CDCl3),δ:7.52(d, J=7.8 Hz,1H,ArH),7.29~7.41(m,3H,ArH),7.16(d, J=8.4 Hz,2H,ArH),7.04(d, J=8.4 Hz,2H,ArH),7.02(d, J=8.4 Hz,2H,ArH),6.65(d, J=8.4 Hz,2H,ArH),6.07(s,1H,CH),5.53(br s,1H,NH),4.33(s,2H,CH2),3.77~3.80(m,1H,CH),2.26(s,3H,CH3),0.99~1.96(m,10H,CH2);IR(KBr),σ/cm-1:3442(NH),3271(NH),3085,2930,2850,1683(CO),1641(CO),1615,1562,1490,1453,1328,1254,1126,1065;MS(EI, 70 eV), m/z:558(M+,4.5),433(6.5),326(9.8),284(25.3),145(10.7),121(100),91(46.0);元素分析(C30H30ClF3N2O3计算值)/%:C 64.30(64.46),H 5.52(5.41),N 5.14(5.01)。

    化合物3d(Ar1=4-CH3O-C6H4,Ar2=4-CH3-C6H4):白色固体,产率73%,mp 195.4~196.8℃。1H NMR(400 MHz,CDCl3),δ:7.48(d, J=7.2 Hz,2H,ArH),7.28~7.40(m,2H,ArH),7.02(d, J=7.2 Hz, 2H,ArH),6.97(d, J=7.2 Hz,2H,ArH),6.69(d, J=9.6 Hz,1H,ArH),6.66(d, J=9.6 Hz,2H,ArH),6.10(s,1H,CH),5.46(br s,1H,NH),4.32(s,2H,CH2),3.79~4.01(m,1H,CH),3.74(s,3H,CH3),2.25(s,3H,CH3),0.98~1.93 (m,10H,CH2);IR(KBr),σ/cm-1:3452(NH),3281(NH),3082,2937,2859,1678(CO),1645(CO),1614,1565,1488,1441,1332,1262,1134,1061;MS(EI, 70 eV), m/z:554.6(M+,2.5),428(12.1),348(3.9),322(7.0),278(13.0),121(100),91(34.8);元素分析(C31H33F3N2O4计算值)/%:C 67.32 (67.14),H 6.13(6.00),N 5.18(5.05)。

    化合物3e(Ar1=4-Cl-C6H4,Ar2=4-NO2-C6H4):白色固体,产率85%,mp>260℃。1H NMR(600 MHz, CDCl3),δ:8.18(d, J=8.4 Hz,2H,ArH),8.14(s,1H,ArH),7.56(d, J=7.8 Hz,1H,ArH),7.29~7.40(m,2H,ArH),7.18(d, J=8.4 Hz,2H,ArH),7.03(d, J=7.8 Hz,2H,ArH),6.87(d, J=9.0 Hz,2H,ArH),6.04(s,1H,CH),5.38(d, J=7.8 Hz,1H,NH),4.46(s,2H,CH2),3.72~3.79(m,1H,CH),0.99~1.93(m,10H,CH2);IR(KBr),σ/cm-1:3448(NH),3283(NH),3089,2934,2855,1687(CO),1637(CO),1612,1559,1483,1451,1329,1250,1122,1069;MS(EI, 70 eV), m/z:589.5(M+,5.3),465(26.8),435(9.8),356(10.5),326(57.9),284(37.8),222(11.0),207(31.2),191(22.6),152(83.0),145(26.0),139(62.5),129(20.9),127(31.8),125(100),108(26.0);元素分析(C29H27ClF3N3O5计算值)/%:C 59.22(59.04), H 4.54(4.61), N 7.25(7.12)。

    化合物3f(Ar1=4-CH3O-C6H4,Ar2=4-NO2-C6H4):白色固体,产率74%,mp 255.5~256.9℃。1H NMR(400 MHz,CDCl3),δ:8.17(d, J=7.6 Hz,2H,ArH),7.52(d, J=7.2 Hz,1H,ArH),7.31~7.46(m,3H,ArH),6.95(d, J=7.2 Hz,2H,ArH),6.88(d, J=7.2 Hz,2H,ArH),6.72(d, J=7.2 Hz,2H,ArH),6.08(s,1H,CH),5.39(br s,1H,NH),4.55(s,2H,CH2),4.38~4.50(m,1H,CH),3.74(s,3H,CH3),2.25(s,3H,CH3),1.00~1.91(m,10H,CH2);IR(KBr),σ/cm-1:3446(NH),3277(NH),3084,2932,2862,1675(CO),1642(CO),1611,1566,1484,1438,1332,1261,1136,1058;MS(EI, 70 eV), m/z:585.6(M+,2.5),460.5(8.4),348(7.2),322(6.3),280(13.0),207(8.6),152(21.8),121(100);元素分析(C30H30F3N3O6计算值)/%:C 61.69(61.53),H 5.01(5.16),N 7.25(7.18)。

    化合物3g(Ar1=4-Cl-C6H4,Ar2=4-Cl-C6H4):白色固体,产率86%,mp 248.4~249.2℃;1H NMR(600 MHz,CDCl3),δ:7.53(d, J=7.8 Hz,1H,ArH),7.29~7.48(m,3H,ArH),7.19(d, J=9.0 Hz,2H,ArH),7.17(d, J=8.4 Hz,2H,ArH),7.03(d, J=8.4 Hz,2H,ArH),6.70(d, J=8.4 Hz,2H,ArH),6.04(s,1H,CH),5.46(d, J=7.8 Hz,1H,NH),4.34(s,2H,CH2),3.74~3.80(m,1H,CH),0.97~1.95(m,10H,CH2);IR(KBr),σ/cm-1:3451(NH),3287(NH),3090,2933,2862,1682(CO),1635(CO),1611,1553,1486,1456,1325,1257,1127,1072;MS(EI, 70 eV), m/z:579.4(M+,0.7),326(18.0),284(16.3),188(9.3),145(20.4),143(25.4),141(100),125(28.0),111(22.8);元素分析(C29H27Cl2F3N2O3计算值)/%:C 60.34(60.11),H 4.57(4.70),N 4.98(4.83)。

    化合物3h(Ar1=4-CH3O-C6H4,Ar2=4-Cl-C6H4):白色固体,产率75%,mp 210.6~211.3℃。1H NMR(600 MHz,CDCl3),δ:7.50(d, J=7.8 Hz,1H,ArH),7.30~7.44(m,3H,ArH),7.18(d, J=8.4 Hz,2H,ArH),6.96(d, J=8.4 Hz,2H,ArH),6.71(d, J=9.0 Hz,2H,ArH),6.68(d, J=9.0 Hz,2H,ArH),6.08(s,1H,CH),5.45(d, J=7.8 Hz,1H,NH),4.33(2d, J=15.0 Hz,2H,CH2),3.77~3.81(m,1H,CH),3.74(s,3H,CH3),0.98~1.95(m,10H,CH2);IR(KBr),σ/cm-1:3452(NH),3267(NH),3081,2934,2867,1671(CO),1639(CO),1606,1572,1481,1435,1337,1259,1131,1062;MS(EI, 70 eV), m/z:574.5(M+,2.1),448(19.4),348(4.5),322(14.9),279 (9.4),141(41.4),121(100),111(23.6);元素分析(C30H30ClF3N2O4计算值)/%:C 62.49(62.66),H 5.30(5.26),N 4.74(4.87)。

    化合物3i(Ar1=4-Cl-C6H4,Ar2=2-Cl, 4-F-C6H3):白色固体,产率85%,mp>260℃。1H NMR (600 MHz,CDCl3),δ:7.53 (d, J=7.8 Hz,1H,ArH),7.29~7.48(m,3H,ArH),7.17 (d, J=8.4 Hz,2H,ArH),7.08(d, J=7.8 Hz,1H,ArH),7.03(d, J=8.4 Hz,2H,ArH),6.89(dd, J=4.8 Hz, J=9.0 Hz,1H,ArH),6.79(dd, J=4.8 Hz, J=9.0 Hz,1H,ArH),6.06(s,1H,CH),5.48(d, J=7.8 Hz,1H,NH),4.41(s,2H,CH2),3.72~3.80(m,1H,CH),0.99~1.95(m,10H,CH2);IR(KBr),σ/cm-1:3440(NH),3272(NH),3086,2936,2857,1691(CO),1645(CO),1610,1564,1492,1441,1328,1250,1129,1066;MS(EI, 70 eV), m/z:597(M+,1.27),471(10.0),442(10.5),436(14.0),328(18.4),326(24.0),284(20.9),283(21.0),186(14.7),161(27.8),159(100),139(35.0),129(28.0),83(21.2);元素分析(C29H26Cl2F4N2O3计算值)/%:C 58.16(58.30),H 4.22(4.39),N 4.54(4.69)。

    化合物3j(Ar1=4-CH3O-C6H4,Ar2=2-Cl, 4-F-C6H3):白色固体,产率91%,mp 219.5~220.3℃。1H NMR(400 MHz,CDCl3),δ:7.49(d, J=6.8 Hz,1H,ArH),7.31~7.46(m,3H,ArH),7.07(d, J=7.6 Hz,1H,ArH),6.95(d, J=7.6 Hz,2H,ArH),6.90(d, J=7.6 Hz,1H,ArH),6.82(dd, J=4.0 Hz, J=7.6 Hz,1H,ArH),6.69(d, J=7.2 Hz,2H,ArH),6.09(s,1H,CH),5.40(d, J=7.6 Hz,1H,NH),4.40(s,2H,CH2),3.75~3.80(m,1H,CH),3.74(s,3H,CH3),1.00~1.82(m,10H,CH2);IR(KBr),σ/cm-1:3443(NH),3277(NH),3084,2930,2854,1688(CO),1646(CO),1612,1515,1494,1326,1256,1128,1072;MS(EI, 70 eV), m/z:592.4(M+,2.5),469(12.3),467(16.3),322(29.0),279(20.1),278(22.6),159(44.8),121(100),83(19.8);元素分析(C30H29ClF4N2O4计算值)/%:C 60.89(60.76),H 4.77(4.93),N 4.63(4.72)。

    化合物3k(Ar1=4-Cl-C6H4,Ar2=2-F, 4-Cl-C6H3):白色固体,产率93%,mp>260℃。1H NMR (600 MHz,CDCl3),δ:7.53(d, J=7.2 Hz,1H,ArH),7.31~7.49(m,3H,ArH),7.17(d, J=6.4 Hz,2H,ArH),7.01~7.07(m,4H,ArH),6.82(t, J=8.4 Hz,1H,ArH),6.05(s,1H,CH),5.44(d, J=8.4 Hz,1H,NH),4.40(s,2H,CH2),3.72~3.80(m,1H,CH),1.00~1.95(m,10H,CH2);IR(KBr),σ/cm-1:3436(NH),3270(NH),3082,2939,2851,1687(CO),1642(CO),1606,1567,1488,1440,1322,1255,1122,1060;MS(EI, 70 eV), m/z:597(M+,2.5),471(9.8),436(18.2),328(22.6),326(28.0),284(36.2),283(17.5),186(9.2),161(33.8),159(100),139(27.3),129(46.6);元素分析(C29H26Cl2F4N2O3计算值)/%:C 58.43(58.30),H 4.51(4.39),N 4.80(4.69)。

    化合物3l(Ar1=4-CH3O-C6H4,Ar2=2-F, 4-Cl-C6H3):白色固体,产率93%,mp 238.5~239.4℃。1H NMR(400 MHz,CDCl3),δ:7.50(d, J=6.8 Hz,1H,ArH),7.30~7.45(m,3H,ArH),7.03(d, J=7.6 Hz,2H,ArH),6.95(d, J=8.8 Hz,2H,ArH),6.83(t, J=8.8 Hz,1H,ArH),6.69(d, J=8.8 Hz,2H,ArH),6.09(s,1H,CH),5.41(d, J=8.4 Hz,1H,NH),4.40(s,2H,CH2),3.78~3.82(m,1H,CH),3.74(s,3H,CH3),0.97~1.92(m,10H,CH2);IR(KBr),σ/cm-1:3436(NH),3272(NH),3079,2925,2851,1684(CO),1652(CO),1601,1519,1491,1333,1257,1134,1062;MS(EI, 70 eV),m/z:594.5(M+2, 2.4),466(17.9),322(34.0),280(26.5),207(29.5),161(20.6),159(51.4),145(20.2),135(30.4),121(100),98(30.8);元素分析(C30H29ClF4N2O4计算值)/%:C 60.57(60.76),H 5.06(4.93),N 4.64(4.72)。

    化合物3m(Ar1=4-Cl-C6H4,Ar2=4-CH3O-C6H4):白色固体,产率76%,mp 224.8~225.9℃。1H NMR(600 MHz,CDCl3),δ:7.51(d, J=7.2 Hz,1H,ArH),7.31~7.45(m,3H,ArH),7.16(d, J=7.2 Hz,2H,ArH),7.03(d, J=7.8 Hz,2H,ArH),6.77(d, J=6.6 Hz,2H,ArH),6.71(d, J=7.2 Hz,2H,ArH),6.06(s,1H,CH),5.58(d, J=6.6 Hz,1H,NH),4.31(s,2H,CH2),3.74~3.80(m,1H,CH),3.73(s,3H,CH3),1.00~1.96 (m,10H,CH2);IR(KBr),σ/cm-1:3443(NH),3261(NH),3075,2936,2862,1673(CO),1635(CO),1602,1567,1473,1431,1332,1248,1121,1059;MS(EI, 70 eV),m/z:574.5(M+,3.5),448(21.5),322(16.2),141(48.6),121(100);元素分析(C30H30ClF3N2O4计算值)/%:C 62.81(62.66),H 5.10(5.26),N 4.99(4.87)。

    化合物3n(Ar1=4-CH3O-C6H4,Ar2=4-CH3O-C6H4):白色固体,产率76%,mp 183.5~184.6℃。1H NMR(600 MHz,CDCl3),δ:7.48(d, J=7.8 Hz,1H,ArH),7.30~7.45(m,3H,ArH),6.96(d, J=7.8 Hz,2H,ArH),6.77(d, J=9.0 Hz,2H,ArH),6.72(d, J=7.2 Hz,2H,ArH),6.69(d, J=9.0 Hz,2H,ArH),6.10(s,1H,CH),5.49(d, J=7.8 Hz,1H,NH),4.31(2d, J=15.0 Hz,2H,CH2),3.79~3.82(m,1H,CH),3.74(s,6H,CH3),0.99~1.96(m,10H,CH2);IR(KBr),σ/cm-1:3461(NH),3273(NH),3077,2930,2862,1685(CO),1644(CO),1610,1561,1492,1437,1331,1258,1133,1049;MS(EI, 70 eV),m/z:570.7(M+, 4.2),444(10.6),348(9.6),280(17.1),278(24.3),137(100),121(60.5),107(31.8),98(23.6);元素分析(C31H33F3N2O5计算值)/%:C 65.39(65.25),H 5.93(5.83), N 5.02(4.91)。

    化合物3o(Ar1=4-Cl-C6H4,Ar2=2, 6-Cl2-C6H3):白色固体,产率87%,mp 238.7~239.8℃。1H NMR(600 MHz,CDCl3),δ:7.49(d, J=7.8 Hz,1H,ArH),7.32~7.45(m,3H,ArH),7.22(d, J=8.4 Hz,2H,ArH),7.17(d, J=8.4 Hz,2H,ArH),7.07(d, J=8.4 Hz,2H,ArH),6.96(t, J=7.8 Hz,1H,ArH),6.14(s,1H,CH),5.68(d, J=7.8 Hz,1H,NH),4.31(2d, J=12.6 Hz,2H,CH2),3.81~3.84(m,1H,CH),1.04~2.00(m,10H,CH2);IR(KBr),σ/cm-1:3437(NH),3264(NH),3081,2935,2847,1685(CO),1641(CO),1603,1562,1480,1435,1320,1257,1126,1055;MS(EI, 70 eV),m/z:614(M+2, 5.4),490(16.9),454(37.0),346(28.7),328(31.0),326(100),284(96.0),207(92.2),186(69.8),179(46.8),141(93.2),113(62.4),91(68.8);元素分析(C29H26Cl3F3N2O3计算值)/%:C 56.59(56.74),H 4.35(4.27),N 4.70(4.56)。

    化合物3p(Ar1=4-CH3O-C6H4,Ar2=2, 6-Cl2-C6H3):白色固体,产率67%,mp 213.5~214.2℃。1H NMR(400 MHz,CDCl3),δ:8.10(d, J=6.8 Hz,1H,ArH),7.48~7.56(m,3H,ArH),7.39(d, J=7.2 Hz,2H,ArH),7.11(t, J=7.6 Hz,1H,ArH),6.95(d, J=7.2 Hz,2H,ArH),6.69(d, J=7.2 Hz,2H,ArH),6.10(s,1H,CH),4.32(br s,1H,NH),4.12~4.21 (m,1H,CH),3.61(s,3H,CH3),3.39(s,2H,CH2),0.97~1.78(m,10H,CH2);IR(KBr),σ/cm-1:3427(NH),3274(NH),3062,2936,2848,1679(CO),1651(CO),1605,1511,1463,1330,1252,1137,1035;MS(EI, 70 eV),m/z:610(M+2,5.6),348(38.4),296(28.8),151(48.9),121(100);元素分析(C30H29Cl2F3N2O4计算值)/%:C 59.33(59.12),H 4.65(4.80),N 4.74(4.60)。

    化合物3q(Ar1=4-Cl-C6H4,Ar2=2, 4-Br2-C6H3):白色固体,产率90%,mp 230.0~231.9℃。1H NMR(600 MHz,CDCl3),δ:7.63(s,1H,ArH),7.53(d, J=7.8 Hz,1H,ArH),7.37~7.45(m,3H,ArH),7.34(d, J=8.4 Hz,1H,ArH),7.17(d, J=8.4 Hz,2H,ArH),7.02(d, J=8.4 Hz,2H,ArH),6.65(d, J=9.0 Hz,1H,ArH),6.05(s,1H,CH),5.49(d, J=7.2 Hz,1H,NH),4.42(s,2H,CH2),3.71~3.80(m,1H,CH),0.99~1.95 (m,10H,CH2);IR(KBr),σ/cm-1:3450(NH),3261(NH),3075,2945,2842,1680(CO),1636(CO),1605,1563,1498,1435,1321,1252,1127,1059;MS(EI, 70 eV),m/z:702.5(M+2,2.6),701.7(M+, 4.9),579(103),375(10.6),328(26.0),326(86.1),284(49.3),283(33.0),267(39.8),265(66.8),238(20.4),222(42.5),186(80.4),156(45.3),145(100),125(92.6),83(82.9);元素分析(C29H26Br2ClF3N2O3计算值)/%:C 49.37(49.56),H 3.81(3.73),N 3.76(3.99)。

    化合物3r(Ar1=4-CH3O-C6H4,Ar2=2, 4-Br2-C6H3):白色固体,产率76%,mp 217.2~218.3℃。1H NMR(400 MHz,CDCl3),δ:7.62(s,1H,ArH),7.50(d, J=7.6 Hz,1H,ArH),7.34(d, J=8.8 Hz,1H,ArH),7.12~7.21(m,3H,ArH),6.95(d, J=8.0 Hz,2H,ArH),6.70(d, J=8.0 Hz,2H,ArH),6.67(s,1H,ArH),6.09(s,1H,CH),5.40(d, J=7.8 Hz,1H,NH),4.42(s,2H,CH2),3.75~3.81(m,1H,CH),3.74(s,3H,CH3),0.97~1.92(m,10H,CH2);IR(KBr),σ/cm-1:3440(NH),3274(NH),3081,2922,2849,1680(CO),1649(CO),1606,1513,1487,1335,1252,1138,1057;MS(EI, 70 eV),m/z:700(M+2,0.7),698.6(M+,1.0),348(17.4),322(43.9),280(26.5),278(33.1),263(15.9),186(12.3),135(20.0),122(19.1),121(100),98(19.5);元素分析(C30H29Br2F3N2O4计算值)/%:C 51.75 (51.59),H 4.32(4.19),N 4.10(4.01)。

    化合物3s(Ar1=4-Cl-C6H4,Ar2=4-t-Bu-C6H4):白色固体,产率84%,mp 252.2~253.1℃。1H NMR(400 MHz,CDCl3),δ:7.52(d, J=7.6 Hz,1H,ArH),7.30~7.42(m,3H,ArH),7.24(d, J=7.6 Hz,2H,ArH),7.16(d, J=8.4 Hz,2H,ArH),7.05(d, J=7.6 Hz,2H,ArH),6.70(d, J=8.4 Hz,2H,ArH),6.07(s,1H,CH),5.55(d, J=6.8 Hz,1H,NH),4.33(2d, J=14.4 Hz,2H,CH2),3.79~3.81(m,1H,CH),1.61~1.94(m,4H,CH2),1.29(s,9H,t-Bu),0.99~1.26(m,6H,CH2);IR(KBr),σ/cm-1:3446(NH),3267(NH),3081,2925,2849,1681(CO),1637(CO),1616,1560,1482,1450,1323,1250,1124,1054;MS(EI, 70 eV),m/z:602.5(M+2,1.9),600.4(M+,1.9),475(6.5),326(18.5),285(23.4),284(30.2),283(34.5),188(9.2),163(100),139 (31.2),125(22.5),91(31.8);元素分析(C33H36ClF3N2O3计算值)/%:C 66.05(65.94),H 6.13(6.04),N 4.47(4.66)。

    化合物3t(Ar1=4-CH3O-C6H4,Ar2=4-t-Bu-C6H4):白色固体,产率79%,mp 242.2~243.3℃。1H NMR(400 MHz,CDCl3),δ:7.48(d, J=7.6 Hz,1H,ArH),7.29~7.43(m,3H,ArH),7.24(d, J=8.8 Hz,2H,ArH),6.97(d, J=7.6 Hz,2H,ArH),6.71(d, J=7.2 Hz,2H,ArH),6.68(d, J=7.2 Hz,2H,ArH),6.10(s,1H,CH),5.47(d, J=7.6 Hz,1H,NH),4.32(2d, J=15.0 Hz,2H,CH2),3.75~3.92(m,1H,CH),3.74(s,3H,CH3),1.63~1.96(m,4H,CH2),1.26(s,9H,t-Bu),0.98~1.11(m,6H,CH2);IR(KBr),σ/cm-1:3447(NH),3276(NH),3051,2932,2850,1675(CO),1641(CO),1626,1567,1494,1435,1329,1257,1136,1057;MS(EI, 70 eV),m/z:596.6(M+,1.3),348(12.5),322(10.8),121(100);元素分析(C34H39F3N2O4计算值)/%:C 68.62(68.44),H 6.63(6.59),N 4.55(4.69)。

    化合物3u(Ar1=4-Cl-C6H4,Ar2=2, 4-Cl2-C6H3):白色固体,产率93%,mp 250.7~251.1℃。1H NMR(400 MHz,CDCl3),δ:8.15(s,1H,ArH),7.46~7.57(m,4H,ArH),7.30(d, J=8.8 Hz,1H,ArH),7.22(d, J=8.0 Hz,2H,ArH),7.05(d, J=7.6 Hz,2H,ArH),6.95(t, J=8.8 Hz,1H,ArH),6.07(s,1H,CH),4.63(d, J=15.2 Hz,2H,CH2),4.49(br s,1H,NH),3.61~3.72(m,1H,CH),0.98~1.69(m,10H,CH2);IR(KBr),σ/cm-1:3440(NH),3261(NH),3074,2939,2843,1680 (CO),1645(CO),1601,1562,1486,1432,1319,1253,1137,1057;MS(EI, 70 eV),m/z:612(M+,1.6),490(12.5),454(45.0),346(15.8),328(37.0),326(100),284(82),207(45.6),141(31.0);元素分析(C29H26Cl3F3N2O3计算值)/%:C 56.54(56.74),H 4.30(4.27),N 4.71(4.56)。

    化合物3v(Ar1=4-CH3O-C6H4,Ar2=2, 6-Cl2-C6H3):白色固体,产率73%,mp 221.2~222.0℃。1H NMR(400 MHz,CDCl3),δ:7.50(d, J=6.8 Hz,1H,ArH),7.35~7.42(m,3H,ArH),7.32(s,1H,ArH),7.15(d, J=8.8 Hz,1H,ArH),6.95(d, J=8.4 Hz,2H,ArH),6.76(d, J=8.8 Hz,1H,ArH),6.70(d, J=8.8 Hz,2H,ArH),6.10(s,1H,CH),5.43(d, J=8.0 Hz,1H,NH),4.43(s,2H,CH2),3.75~3.81(m,1H,CH),3.73(s,3H,CH3),0.96~1.94(m,10H,CH2);IR(KBr),σ/cm-1:3422(NH),3276 (NH),3059,2931,2843,1675(CO),1647(CO),1613,1504,1465,1332,1244,1135,1031;MS(EI, 70 eV),m/z:610.7(M+2,5.6),348(16.6),322(57.6),280(31.8),278(36.4),175(49.1),164(13.7),147(25.2),145(33.7),137(25.4),135(29.3),122(19.4),121(100),98(25.2);元素分析(C30H29Cl2F3N2O4计算值)/%:C 59.03(59.12),H 4.99(4.80),N 4.86(4.60)。

    2 结果与讨论
    2.1 目标产物3的合成与波谱特征

    采用2-芳氧乙酸、3-三氟甲基苯胺、芳香醛和环己基异腈四组分Ugi反应,在温和反应条件下,以67%~93%产率得到目标化合物3a~3v。其结构经IR、1H NMR、MS和元素分析所确证。在化合物3的IR中,3450 cm-1附近出现的是酰胺N—H伸缩振动吸收峰,其两个CO的伸缩振动吸收峰分别出现在1680、1650 cm-1附近。C—N特征伸缩振动吸收峰出现在1330~1250 cm-1附近。从该类化合物的1H NMR可以看出,酰胺上NH的化学位移出现在5.4处,显示为一个宽的单峰,有时显示为一组双重峰;芳香环上质子化学位移出现在8.1~6.7之间;与芳基相连的次甲基的质子出现在6.05附近,显示为单重峰,而亚甲基质子的化学位移出现在3.4~4.4附近,显示为单峰,有时表现为两组双重峰。质谱分析表明,这类化合物均出现较弱的分子离子峰。如化合物3a的分子离子峰为558,相对离子丰度为2.5%。其中酰胺键的断裂是该类化合物质谱主要的可能裂解方式。

    2.2 目标化合物的除草活性测定

    离体平皿测试(In Vitro)按照文献[18]方法进行。油菜采用平皿法,稗草采用小杯法,药剂浓度为100和10 mg/L, 采用商品化除草剂2, 4-二氯苯氧乙酸(商品名:2, 4-D)作为阳性对照药, 每个实验平行进行3次,取平均值,其除草活性结果列于表 1中;温室盆栽测试(In Vivo)按照文献[19]方法进行。采用双子叶植物油菜(B.campestris L.)、反枝苋(A.retroflexus)、单子叶植物稗草(E.crus-galli)、马唐(D.sanguinalis)作为待测植物;以除草剂2, 4-二氯苯氧乙酸(2, 4-D)作为阳性对照药,21 d后调查结果,测定地上部鲜重,与空白对照对照后,以鲜重抑制百分数来表示药效。每个试验设置3个平行组,取其平均值,其除草活性结果列于表 2中。

    表 1 目标化合物3a~3v的除草活性(离体平皿法,抑制率/%) Table 1 Herbicidal Activity of compounds 3a~3v(in vitro, inhibition/%)

    表 2 部分目标化合物3的除草活性(温室盆栽法,1.5 kg/ha,抑制率/%) Table 2 Herbicidal activity of some of compounds 3(in vivo, 1.5 kg/ha, inhibition/%)

    从测试结果可以看出,部分目标化合物对油菜(B.campestris)显示出较好的除草活性。例如:化合物3i、3m、3n和3r在100 mg/L浓度下,对油菜分别显示出75.2%、72.5%、89.4%和98.5%的抑制活性。但对稗草的抑制活性较弱, 说明这类化合物具有一定的选择性除草活性。

    同时,对活性较好的4个目标化合物(3i、3m、3n和3r)进行了温室盆栽测试,其结果列于表 2中。从表 2可以看出,在1.5 kg/ha的剂量下,以上4个化合物在苗前处理时对4种待测植物显示出中等至良好的除草活性。例如化合物3r在苗前处理时对油菜、反枝苋、稗草和马唐的抑制率分别为98.5%、100%、86.1%和100%, 除草效果与对照药2, 4-D相当。该类化合物对油菜、反枝苋的抑制活性要高于其对马唐和稗草的活性;在苗前处理时除草活性要高于苗后处理的活性。构效关系具有如下特点,与羰基相连的芳基(Ar1)上的取代基的电子效应对其除草活性影响不明显,带有给电子基(3n和3r,4-甲氧基取代)的化合物与带有吸电子基(3i和3m,4-氯取代)的化合物显示出相当的除草活性。其次,芳氧乙酰基的芳香环(Ar2)上的取代基对除草活性有显著影响,当Ar2为4-氯、4-甲氧基、2, 4-二溴和2-氯, 4-氟取代的化合物表现出较高的除草活性; 而当Ar2为4-叔丁基、2, 4-二氯以及2, 6-二氯取代的化合物除草活性较弱,说明Ar2上取代基的空间效应和电子效应对其除草活性起着重要的作用。

    3 结论

    采用Ugi反应四组分“一锅”合成了一系列含芳氧乙酰基和间-三氟甲基苯基片段的双酰胺化合物,产率67%~93%,其结构经IR、1H NMR、EI-MS和元素分析确认。温室盆栽测试结果表明,在1.5 kg/ha剂量下,部分目标化合物在苗前处理时对油菜、反枝苋、稗草和马唐显示出良好的除草活性。

    参考文献
    [1] WANG Mingqi, YE Fei. Study and Application of Phenoxycarboxylic Acid Herbicides[J]. New Pestic , 2005, 39 (1) : 20–22. (in Chinese) 王铭琦, 叶非. 苯氧羧酸类除草剂的研究与应用进展[J]. 新农药 , 2005, 39 (1) : 20–22. ()
    [2] ZHANG Yuju, LI Jide, ZHANG Desheng, et al. Diagnose of Phytotoxicity and Technology of Safe Application of Phenoxycarboxylic Acid and Benzoic Acid Herbicides[J]. J He'nan Agric Sci , 2001, 30 (11) : 13–15. (in Chinese) 张玉聚, 李继德, 张德胜, 等. 苯氧羧酸类和苯甲酸类除草剂药害诊断与安全应用技术[J]. 河南农业科学 , 2001, 30 (11) : 13–15. ()
    [3] Sandmann G, Böger P, In Herbicide Activity:Toxicology, Biochemistry, and Molecular Biology. Roe R M, Burton J D, Kuhr R J.Eds.Amsterdam:IOS Press[M]. 1997 : 1 -10. ()
    [4] Sandmann G.In Herbicidal Classes in Development:Mode of Action, Targets, Genetic Engineering, Chemistry[M].Böger P, Wakabayashi K, Hirai K, Eds.Berlin:Springer, 2002:43-55. ()
    [5] Mitchell G.In Synthesis and Chemistry of Agrochemicals IV, ACS Symposium Series[M].Baker D A, Fenyes J G, Moberg W K, et al.Ed.Washington DC:American Chemical Society, 1995, 584:161-170. ()
    [6] Sandmann G, Kowalczyk-Schroder S, Taylor H M. Quantitative Structure-Activity Relationship of Fluridone Derivatives with Phytoene Desaturase[J]. Pestic Biochem Physiol , 1992, 42 (1) : 1–6. DOI:10.1016/0048-3575(92)90067-A ()
    [7] Sandmann G, Bramley P M, Böger P. New Herbicidal Inhibitors of Carotene Biosynthesis[J]. Pestic Sci , 1985, 10 (1) : 19–24. DOI:10.1584/jpestics.10.19 ()
    [8] Heap I.International survey of herbicide resistance weeds, http://weedscience.com. ()
    [9] Ohno R, Nagaoka M, Hirai K, et al. Synthesis and Insecticidal Activity of Novel 1-Alkyl-3-Sulfonyloxypyrazole-4-Carboxamide Derivatives[J]. J Pestic Sci , 2010, 35 (1) : 15–22. DOI:10.1584/jpestics.G09-50 ()
    [10] Omura S, Tanaka T.Pesticide Chemistry[M].Ohkawa H, Miyagawa H, Lee P W.Ed.Weinheim:Wiley-VCH, 1991, 7:87. ()
    [11] Guan A, Liu C, Yang X, et al. Application of the Intermediate Derivatization Approach in Agrochemical Discovery[J]. Chem Rev , 2014, 114 (14) : 7079–7107. DOI:10.1021/cr4005605 ()
    [12] Dömling A, Wang W, Wang K. Chemistry and Biology of Multicomponent Reactions[J]. Chem Rev , 2012, 112 (6) : 3083–3155. DOI:10.1021/cr100233r ()
    [13] Marcaccini S, Torroba T. The Use of the Ugi Four-component Condensation[J]. Nat Protoc , 2007, 2 (3) : 632–639. DOI:10.1038/nprot.2007.71 ()
    [14] Ugi I, Werner B, Dömling A. The Chemistry of Isocyanides, Their MultiComponent Reactions and Their Libraries[J]. Molecules , 2003, 8 (1) : 53–66. DOI:10.3390/80100053 ()
    [15] Zuo X, Mi N, Fan Z, et al. Synthesis of 4-Methyl-1, 2, 3-thiadiazole Derivatives via Ugi Reaction and Their Biological Activities[J]. J Agric Food Chem , 2010, 58 (5) : 2755–2762. DOI:10.1021/jf902863z ()
    [16] HU Hanning, LI Anling, ZHANG Hanyun, et al. Synthesis of N-Cyclohexyl 2-{N-(3-Trifluoromethylphenyl)-[3-(trifluo-romethyl) benzoyl, 2-(substitutedphenoxy) propionyl, 2-(4, 6-dime-thoxypyrimidinyl-2-oxy) benzoyl-]-amino}-substituted-phenyl-acetamides via Ugi Reaction and Their Herbicidal Activity Evaluation[J]. Chinese J Org Chem , 2015, 35 : 2162–2167. (in Chinese) 胡汉宁, 黎安玲, 张瀚匀, 等. 利用Ugi反应合成2-{N-(3-三氟甲基苯基)-[3-(三氟甲基)苯甲酰、2-(取代苯氧)丙酰、2-(4, 6-二甲氧基-嘧啶-2-氧基)苯甲酰]-氨基}-取代苯乙酰环己胺及其除草活性评价[J]. 有机化学 , 2015, 35 : 2162–2167. DOI:10.6023/cjoc201507003 ()
    [17] HE Hongwu, WANG Jun, LIU Zhaojie, et al. Study on Biologically Active Organophosphorus Compounds V.Syntheses and Properties ofα-(Sunstituted Phenoxy-acetoxy) Alkyl Phosphonates[J]. Chinese J Appl Chem , 1994, 11 (4) : 21–26. (in Chinese) 贺红武, 汪军, 刘钊杰, 等. 具有生物活性的有机磷化合物的研究V.α-[(取代)芳氧基乙酰氧基]烷基膦酸酯的合成和性质[J]. 应用化学 , 1994, 11 (4) : 21–26. ()
    [18] Ugi I, Meyr R, Lipinski M, et al. Cyclohexyl Isocyanide[J]. Org Synth , 1961, 41 : 13. DOI:10.15227/orgsyn.041.0013 ()
    [19] Chen X B, Shi D Q, Zhu X F. Synthesis, Crystal Structure and Biological Activities of O, O-Dialkylα-[1-(2-Chlorothiazol-5-ylmethyl)-5-methyl-1H-1, 2, 3-triazol-4-ylcarbonyloxy]alkylphosphonates[J]. Chinese J Chem , 2007, 25 (12) : 1854–1858. DOI:10.1002/(ISSN)1614-7065 ()
    [20] Liu Y X, Wei D G, Zhu Y R, et al. Synthesis, Herbicidal Activities, and 3D-QSAR of 2-Cyanoacrylates Containing Aromatic Methylamine Moieties[J]. J Agric Food Chem , 2008, 56 (1) : 204–212. DOI:10.1021/jf072851x ()