Citation: Zhou Chunyu, Yang Junling, Yu Zhendong. Preparation and Adsorption Properties of Nano-Fe3O4@Chitosan[J]. Chemistry, ;2018, 81(10): 914-918, 923. shu

Preparation and Adsorption Properties of Nano-Fe3O4@Chitosan

  • Corresponding author: Yang Junling, yangjunling@tjpu.edu.cn
  • Received Date: 15 May 2018
    Accepted Date: 23 July 2018

Figures(8)

  • Chitosan was prepared from waste shrimp shell, and then nano-Fe3O4@chitosan material was prepared by using chitosan as shell, magnetic Fe3O4 as core, liquid paraffin as dispersant, T-80 as emulsifier and glutaraldehyde as crosslinking agent. The prepared nano material was characterized by IR, SEM, TG, and XRD. The results showed that the surface of nano-Fe3O4@chitosan are smooth and spherical, the mass ratio of chitosan to Fe3O4 is 2:1 and the diameter is about 75.82 nm. Adsorption kinetic experiment showed that the Cu2+ adsorption of nano-Fe3O4@chitosan corresponds to pseudo-second-order kinetic, which implies a dominant chemical adsorption. The equilibrium adsorption capacity was 17.32 mg/g. Adsorption isotherm experiment showed that the adsorption conforms to the Freundlic adsorption isotherm model, and there is strong interaction between nano-Fe3O4@chitosan and Cu2+. The maximum adsorption capacity was 213.68 mg/g.
  • 加载中
    1. [1]

      D Elieh-Ali-Komi, M R Hamblin. Int. J. Adv. Res., 2016, 4(3):411~427. 

    2. [2]

      K C Cheng, X Y Kong, T L Goh et al. Carbohyd. Polym., 2016, 138:16~26. 

    3. [3]

       

    4. [4]

    5. [5]

      M S Benhabiles, N Drouiche, H Lounici et al. J. Food Meas. Charact., 2013, 7(4):215~221. 

    6. [6]

    7. [7]

    8. [8]

       

    9. [9]

       

    10. [10]

      M Mirabedini, M Z Kassaee. Desalin. Water Treat., 2016, 57(30):14266~14279. 

    11. [11]

    12. [12]

       

    13. [13]

       

    14. [14]

      M Arora, N K Eddy, K A Mumford et al. Cold Regions Sci. Technol., 2010, 62(2~3):92~97. 

    15. [15]

      N A Neg, R E Sheikh, A F El-Farargy et al. J. Ind. Eng. Chem., 2014, 21:526~534.

    16. [16]

      L Hu, Z Yang, L Cui et al. Chem. Eng. J., 2016, 287:545~556. 

    17. [17]

      J Deng,Y Liu, S Liu et al. J. Colloid Interf. Sci., 2017, 506:355~364. 

    18. [18]

      D Malwal, P Gopinath. Colloid Interf. Sci. Commun., 2017, 19:14~19. 

    19. [19]

      T Liu, X Han, Y Wang et al. J. Colloid Interf. Sci., 2017, 508:405~414. 

    20. [20]

      N Viswanathan, S Meenakshi. J. Colloid Interf. Sci., 2008, 322(2):375~383. 

    21. [21]

       

    22. [22]

      Y G A El-Reash. J. Environ. Chem. Eng., 2016, 4(4):3835~3847. 

    23. [23]

      T Xi, L Qian, R Liang et al. Particuology, 2016, 26(3):79~86.

    24. [24]

      Y Wang, L Li, C Luo et al. Int. J. Biol. Macromol., 2016, 86:505~511. 

    25. [25]

       

    26. [26]

      J Wang, S Zhen, S Yun et al. J. Colloid Interf. Sci., 2010, 349(1):293~299. 

    27. [27]

      M Qasim, K Asghar, D Das. Facile synthesis of Fe3O4 and multifunctional Fe3O4@Albumen nanoparticles for biomedical applications. Dae Solid State Physics Symposium. AIP Publishing LLC, 2017:1348~1356. 

    28. [28]

      F A Rafiqi, K Majid. Synth. Met., 2015, 202(1~3):147~156. 

  • 加载中
    1. [1]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    2. [2]

      Dong-Bing Cheng Junxin Duan Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053

    3. [3]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    4. [4]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    5. [5]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    6. [6]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    7. [7]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    8. [8]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    9. [9]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    10. [10]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    11. [11]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    12. [12]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    13. [13]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    14. [14]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    15. [15]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    16. [16]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    17. [17]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    18. [18]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    19. [19]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    20. [20]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

Metrics
  • PDF Downloads(4)
  • Abstract views(163)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return