Citation: DENG Hong-xiang, REN Qiang-qiang, ZHANG Yu-kui. Melting characteristics of fine ash from circulating fluidized bed gasifier[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(3): 273-282. shu

Melting characteristics of fine ash from circulating fluidized bed gasifier

  • Corresponding author: REN Qiang-qiang, renqiangqiang@iet.cn
  • Received Date: 6 September 2017
    Revised Date: 12 January 2018

    Fund Project: The project was supported by the National Key Research and Development Program of China(2017YFB0602302)the National Key Research and Development Program of China 2017YFB0602302

Figures(8)

  • Effects of temperature, atmosphere and residual carbon on melting behavior and mineral transition mechanism of fine ash from Chiping and Suqian circulating fluidized bed gasifier at high temperature was studied using fusion point analyzer, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The results show that ash fusion temperature of two fine ash is the lowest under reducing atmosphere. The existence of mullite is the major reason for the higher ash fusion temperature of Suqian fine ash than that of Chiping. The ash fusion temperature increases with increasing mass fraction of residual carbon. When temperature is above 1300℃ and the mass fraction of residual carbon is more than 3%, moissanite is formed in slags of both fine ashes. Moissanite is mainly responsible for the worse fusibility of ash with higher content of residual carbon.
  • 加载中
    1. [1]

      QU Li-juan. Research on fluidized bed gasification technology[J]. Coal Convers, 2007,20(2):81-85.  

    2. [2]

      HUANG Jie-jie, FANG Yi-tian, WANG Yang. Development of modern coal gasification technology[J]. J Fuel Chem Technol, 2002,30(5):385-391.  

    3. [3]

      XIE Ke-chang. Focus on Coal Chemical Engineering[M]. Beijing:Chemical Industry Press, 2005:11-12.

    4. [4]

      CHEN Xiao-hui, JIA Ya-long, FENG Jie, FANG Yi-tian, LI Wen-ying. Coal gasification performance in fluidized bed-entrained flow integrated reactor[J]. CIESC Journal, 2011,62(12):3484-3491. doi: 10.3969/j.issn.0438-1157.2011.12.027

    5. [5]

      WU J K, FANG Y T, PENG H, WANG Y. A new integrated approach of coal gasification:the concept and preliminary experimental results[J]. Fuel Process. Technol, 2004,86(3):261-266. doi: 10.1016/j.fuproc.2004.03.005

    6. [6]

      ZHOU Zu-xu, MO Yao, ZHU Jian-guo, OU-Yang Zi-Qu, HE Kun, LV Qing-gang. Experimental research on preheating combustion of coal gasification residual carbon[J]. Boiler Technology, 2015,46(5):39-43.  

    7. [7]

      KELEBOPILE L, SUN R, WANG H, ZHANG X, WU S H. Pore development and combustion behavior of gasified semi-char in a drop tube furnace[J]. Fuel Process Technol, 2013,111(8):42-54.  

    8. [8]

      KELEBOPILE L, SUN R, LIAO J. Fly ash and coal char reactivity from Thermo-gravimetric (TGA) experiments[J]. Fuel Process Technol, 2011,92(6):1178-1186. doi: 10.1016/j.fuproc.2011.01.007

    9. [9]

      JIANG Yong-hai, XI Bei-dou, LI You-jin, WANG Qi, ZHANG Xiao-xuan. Characteristics of melting and solidification process of fly ash from refuse incinerator[J]. J Enviror Sci-China, 2005,26(3):176-179.  

    10. [10]

      BIE Ru-shan. Cyclone furnace technology disposing fly ash from MSW incineration plant[J]. Power System Eng, 2010(5):45-49.  

    11. [11]

      REN Q Q, BAO S L. Combustion characteristics of ultrafine gasified semi-char in circulating fluidized bed[J]. Can J Chem Eng, 2016,94(9):1676-1682. doi: 10.1002/cjce.v94.9

    12. [12]

      ZHANG H, ZHU Z, DONG Q. Structural properties and gasification reactivity of Shenmu fly ash obtained from a 5 t/d circulating fluidized bed gasifier[J]. Procedia Eng, 2015,102:1104-1111. doi: 10.1016/j.proeng.2015.01.233

    13. [13]

      ZHANG Yu-kui, ZHANG Hai-xia, ZHU Zhi-ping. Research on physical and chemical properties of fly ash from fluidized bed gasification of Zhundong coal[J]. J Fuel Chem Technol, 2016,44(3):305-313.  

    14. [14]

      YANG Xin, HUANG Jie-jie, FANG Yi-tian, WANG Yang. Slagging characteristics of fly ash from anthracite gasification in fluidized bed[J]. J Fuel Chem Technol, 2013,41(1):1-8.  

    15. [15]

      OBOIRIEN B O, ENGELBRECHT A D, NORTH B C. Mineral-char interaction during gasification of high-ash coals in fluidized-bed gasification[J]. Energy & Fuels, 2011,25(11):5189-5199.  

    16. [16]

      CHEN D X, TANG L H, ZHOU Y M. Effect of char on the melting characteristics of coal ash[J]. J Fuel Chem Technol, 2007,35(2):136-140. doi: 10.1016/S1872-5813(07)60014-0

    17. [17]

      LI Feng-hai, HUANG Jie-jie, FANG Yi-tian, WANG Yang. Effect of the melting characteristics of Huolinhe lignite ash[J]. Coal Convers, 2010,33(4):9-13.  

    18. [18]

      KONG L X, BAI J, LI W. The internal and external factor on coal ash slag viscosity at high temperatures, Part 2:Effect of residual carbon on slag viscosity[J]. Fuel, 2015,158:976-982. doi: 10.1016/j.fuel.2015.06.055

    19. [19]

      DONG Yi-zhen. Study on the slagging characteristics of main components in coal ash[D]. Hangzhou: Zhejiang university, 2006. 

    20. [20]

      VASSILEV S V, KITANO K, VASSILEVA C G. Some relationships between coal rank and chemical and mineral composition[J]. Fuel, 1996,75(13):1537-1542. doi: 10.1016/0016-2361(96)00116-0

    21. [21]

      HUANG Ji-wu, LI Zhou. X-ray Diffraction of Polycrystalline Materials[M]. Beijing:Metallurgical Industry Press, 2013.

    22. [22]

      VAN D J C, MELZER S, SOBIECKI A. Mineral matter transformation during Sasol-Lurgi fixed bed dry bottom gasification-utilization of HT-XRD and FactSage modelling[J]. Miner Eng, 2006,19(10):1126-1135. doi: 10.1016/j.mineng.2006.03.008

    23. [23]

      JIA Ming-sheng, ZHANG Gan-qian. Key factors affecting fusion temperature of coal ash[J]. Coal Chemical Industry, 2007,35(3):1-5.  

    24. [24]

      SONG Wen-jia. Fusibility, flow characteristics and rheological properties of coal ash in the ultra-high temperature gasifier[D]. Shanghai: East China University of Science and Technology, 2011. 

    25. [25]

      VORRES K S. Metling behavior of coal ash materials from coal ash composition[J]. J Eng Power Trans ASME, 1977,101:118-123.  

    26. [26]

      VASSILEV S V, KITANO K, TAKEDA S, TSURUE T. Influence of mineral and chemical composition of coal ashes on their fusibility[J]. Fuel Process Technol, 1995,45(1):27-51. doi: 10.1016/0378-3820(95)00032-3

    27. [27]

      BAI J, LI W, LI B. Characterization of low-temperature coal ash behaviors at high temperatures under reducing atmosphere[J]. Fuel, 2008,87(4):583-591.  

    28. [28]

      VAN D J. Understanding the influence of acidic components (Si, Al, and Ti) on ash flow temperature of South African coal sources[J]. Miner Eng, 2006,19(3):280-286. doi: 10.1016/j.mineng.2005.06.018

    29. [29]

      CAO Min, GU Xiao-hu, FAN Chong, ZHANG Ai-min. Mineral behavior in coal ash at high temperature[J]. Coal Convers, 2010,33(1):12-15.  

    30. [30]

      WU Xiao-jiang, ZHANG Zhong-xiao, ZHOU Tuo. Ash melting behavior and mineral transition mechanism under gasification condition[J]. J Eng Thermophys, 2010,31(9):1590-1594.  

    31. [31]

      NISHI T, HARAGUCHI H, OKUHARA T. Deterioration of coke by ash-carbon reaction in coke during high-temperature treatment[J]. J Fuel Soc Jpn, 1990,69(2):126-133. doi: 10.3775/jie.69.126

    32. [32]

      WANG J, ISHIDA R, TAKARADA T. Carbothermal reactions of quartz and kaolinite with coal char[J]. Energy fuels, 2000,14(5):1108-1114. doi: 10.1021/ef000084x

    33. [33]

      WANG J, MORISHITA K, TAKARADA T. High-temperature interactions between coal char and mixtures of calcium oxide, quartz, and kaolinite[J]. Energy fuels, 2001,15(5):1145-1152. doi: 10.1021/ef0100092

    34. [34]

      MA Z B, BAI J, WEN X, LI X, SHI Y, BAI Z, KONG L X, GUO Z, YAN J, LI W. Mineral transformation in char and its effect on coal char gasification reactivity at high temperatures Part 3:Carbon thermal reaction[J]. Energy Fuels, 2014,28(5):3066-3073. doi: 10.1021/ef5004792

  • 加载中
    1. [1]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    2. [2]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    3. [3]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    4. [4]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    5. [5]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    6. [6]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    7. [7]

      Shanying Chen Kangning Huo Ke Qi Jingyi Li Shuxin Li Yunchao Li . A Novel Colloid Electrophoresis Experiment with the Characteristics of Resource Recycling and Inquiry-Driven Experimental Design. University Chemistry, 2024, 39(5): 274-286. doi: 10.3866/PKU.DXHX202311067

    8. [8]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    9. [9]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

Metrics
  • PDF Downloads(11)
  • Abstract views(1137)
  • HTML views(241)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return