Melting characteristics of fine ash from circulating fluidized bed gasifier
- Corresponding author: REN Qiang-qiang, renqiangqiang@iet.cn
Citation:
DENG Hong-xiang, REN Qiang-qiang, ZHANG Yu-kui. Melting characteristics of fine ash from circulating fluidized bed gasifier[J]. Journal of Fuel Chemistry and Technology,
;2018, 46(3): 273-282.
QU Li-juan. Research on fluidized bed gasification technology[J]. Coal Convers, 2007,20(2):81-85.
HUANG Jie-jie, FANG Yi-tian, WANG Yang. Development of modern coal gasification technology[J]. J Fuel Chem Technol, 2002,30(5):385-391.
XIE Ke-chang. Focus on Coal Chemical Engineering[M]. Beijing:Chemical Industry Press, 2005:11-12.
CHEN Xiao-hui, JIA Ya-long, FENG Jie, FANG Yi-tian, LI Wen-ying. Coal gasification performance in fluidized bed-entrained flow integrated reactor[J]. CIESC Journal, 2011,62(12):3484-3491. doi: 10.3969/j.issn.0438-1157.2011.12.027
WU J K, FANG Y T, PENG H, WANG Y. A new integrated approach of coal gasification:the concept and preliminary experimental results[J]. Fuel Process. Technol, 2004,86(3):261-266. doi: 10.1016/j.fuproc.2004.03.005
ZHOU Zu-xu, MO Yao, ZHU Jian-guo, OU-Yang Zi-Qu, HE Kun, LV Qing-gang. Experimental research on preheating combustion of coal gasification residual carbon[J]. Boiler Technology, 2015,46(5):39-43.
KELEBOPILE L, SUN R, WANG H, ZHANG X, WU S H. Pore development and combustion behavior of gasified semi-char in a drop tube furnace[J]. Fuel Process Technol, 2013,111(8):42-54.
KELEBOPILE L, SUN R, LIAO J. Fly ash and coal char reactivity from Thermo-gravimetric (TGA) experiments[J]. Fuel Process Technol, 2011,92(6):1178-1186. doi: 10.1016/j.fuproc.2011.01.007
JIANG Yong-hai, XI Bei-dou, LI You-jin, WANG Qi, ZHANG Xiao-xuan. Characteristics of melting and solidification process of fly ash from refuse incinerator[J]. J Enviror Sci-China, 2005,26(3):176-179.
BIE Ru-shan. Cyclone furnace technology disposing fly ash from MSW incineration plant[J]. Power System Eng, 2010(5):45-49.
REN Q Q, BAO S L. Combustion characteristics of ultrafine gasified semi-char in circulating fluidized bed[J]. Can J Chem Eng, 2016,94(9):1676-1682. doi: 10.1002/cjce.v94.9
ZHANG H, ZHU Z, DONG Q. Structural properties and gasification reactivity of Shenmu fly ash obtained from a 5 t/d circulating fluidized bed gasifier[J]. Procedia Eng, 2015,102:1104-1111. doi: 10.1016/j.proeng.2015.01.233
ZHANG Yu-kui, ZHANG Hai-xia, ZHU Zhi-ping. Research on physical and chemical properties of fly ash from fluidized bed gasification of Zhundong coal[J]. J Fuel Chem Technol, 2016,44(3):305-313.
YANG Xin, HUANG Jie-jie, FANG Yi-tian, WANG Yang. Slagging characteristics of fly ash from anthracite gasification in fluidized bed[J]. J Fuel Chem Technol, 2013,41(1):1-8.
OBOIRIEN B O, ENGELBRECHT A D, NORTH B C. Mineral-char interaction during gasification of high-ash coals in fluidized-bed gasification[J]. Energy & Fuels, 2011,25(11):5189-5199.
CHEN D X, TANG L H, ZHOU Y M. Effect of char on the melting characteristics of coal ash[J]. J Fuel Chem Technol, 2007,35(2):136-140. doi: 10.1016/S1872-5813(07)60014-0
LI Feng-hai, HUANG Jie-jie, FANG Yi-tian, WANG Yang. Effect of the melting characteristics of Huolinhe lignite ash[J]. Coal Convers, 2010,33(4):9-13.
KONG L X, BAI J, LI W. The internal and external factor on coal ash slag viscosity at high temperatures, Part 2:Effect of residual carbon on slag viscosity[J]. Fuel, 2015,158:976-982. doi: 10.1016/j.fuel.2015.06.055
DONG Yi-zhen. Study on the slagging characteristics of main components in coal ash[D]. Hangzhou: Zhejiang university, 2006.
VASSILEV S V, KITANO K, VASSILEVA C G. Some relationships between coal rank and chemical and mineral composition[J]. Fuel, 1996,75(13):1537-1542. doi: 10.1016/0016-2361(96)00116-0
HUANG Ji-wu, LI Zhou. X-ray Diffraction of Polycrystalline Materials[M]. Beijing:Metallurgical Industry Press, 2013.
VAN D J C, MELZER S, SOBIECKI A. Mineral matter transformation during Sasol-Lurgi fixed bed dry bottom gasification-utilization of HT-XRD and FactSage modelling[J]. Miner Eng, 2006,19(10):1126-1135. doi: 10.1016/j.mineng.2006.03.008
JIA Ming-sheng, ZHANG Gan-qian. Key factors affecting fusion temperature of coal ash[J]. Coal Chemical Industry, 2007,35(3):1-5.
SONG Wen-jia. Fusibility, flow characteristics and rheological properties of coal ash in the ultra-high temperature gasifier[D]. Shanghai: East China University of Science and Technology, 2011.
VORRES K S. Metling behavior of coal ash materials from coal ash composition[J]. J Eng Power Trans ASME, 1977,101:118-123.
VASSILEV S V, KITANO K, TAKEDA S, TSURUE T. Influence of mineral and chemical composition of coal ashes on their fusibility[J]. Fuel Process Technol, 1995,45(1):27-51. doi: 10.1016/0378-3820(95)00032-3
BAI J, LI W, LI B. Characterization of low-temperature coal ash behaviors at high temperatures under reducing atmosphere[J]. Fuel, 2008,87(4):583-591.
VAN D J. Understanding the influence of acidic components (Si, Al, and Ti) on ash flow temperature of South African coal sources[J]. Miner Eng, 2006,19(3):280-286. doi: 10.1016/j.mineng.2005.06.018
CAO Min, GU Xiao-hu, FAN Chong, ZHANG Ai-min. Mineral behavior in coal ash at high temperature[J]. Coal Convers, 2010,33(1):12-15.
WU Xiao-jiang, ZHANG Zhong-xiao, ZHOU Tuo. Ash melting behavior and mineral transition mechanism under gasification condition[J]. J Eng Thermophys, 2010,31(9):1590-1594.
NISHI T, HARAGUCHI H, OKUHARA T. Deterioration of coke by ash-carbon reaction in coke during high-temperature treatment[J]. J Fuel Soc Jpn, 1990,69(2):126-133. doi: 10.3775/jie.69.126
WANG J, ISHIDA R, TAKARADA T. Carbothermal reactions of quartz and kaolinite with coal char[J]. Energy fuels, 2000,14(5):1108-1114. doi: 10.1021/ef000084x
WANG J, MORISHITA K, TAKARADA T. High-temperature interactions between coal char and mixtures of calcium oxide, quartz, and kaolinite[J]. Energy fuels, 2001,15(5):1145-1152. doi: 10.1021/ef0100092
MA Z B, BAI J, WEN X, LI X, SHI Y, BAI Z, KONG L X, GUO Z, YAN J, LI W. Mineral transformation in char and its effect on coal char gasification reactivity at high temperatures Part 3:Carbon thermal reaction[J]. Energy Fuels, 2014,28(5):3066-3073. doi: 10.1021/ef5004792
Mengyao Shi , Kangle Su , Qingming Lu , Bin Zhang , Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
Yan ZHAO , Xiaokang JIANG , Zhonghui LI , Jiaxu WANG , Hengwei ZHOU , Hai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242
Han ZHANG , Jianfeng SUN , Jinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098
Xuewei BA , Cheng CHENG , Huaikang ZHANG , Deqing ZHANG , Shuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7∶xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096
Yan ZHAO , Jiaxu WANG , Zhonghu LI , Changli LIU , Xingsheng ZHAO , Hengwei ZHOU , Xiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316
Shanying Chen , Kangning Huo , Ke Qi , Jingyi Li , Shuxin Li , Yunchao Li . A Novel Colloid Electrophoresis Experiment with the Characteristics of Resource Recycling and Inquiry-Driven Experimental Design. University Chemistry, 2024, 39(5): 274-286. doi: 10.3866/PKU.DXHX202311067
Zhicheng JU , Wenxuan FU , Baoyan WANG , Ao LUO , Jiangmin JIANG , Yueli SHI , Yongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363
Jie WU , Zhihong LUO , Xiaoli CHEN , Fangfang XIONG , Li CHEN , Biao ZHANG , Bin SHI , Quansheng OUYANG , Jiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400
—▼—: oxidation(SQ); —◆—: reduction(SQ); —●—: inert(SQ); —□—: oxidation(CP); —○—: reduction(CP); —△—: inert(CP)
1: anorthite; 2: quartz; 3: anhydrite; 4: hematite
1: mullite; 2: anorthite; 3: quartz; 4: corundum; 5: troilite; 6: oldhamite; 7: anhydrite
(a): CP; (b): SQ
1: anorthite; 2: quartz; 3: oldhamite; 4: hematite; 5: moissanite; 6: omisteinbergite (a): CP-3%; (b): CP-5%; (c): CP-10%; (d): CP-15%
1: mullite; 2: anorthite; 3: quartz; 4: moissanite; 5: corundum; 6: iron; 7: oldhamite; 8: fersilicite; 9: iron silicon; 10: halite; 11: cohenite (a): SQ-3%; (b): SQ-5%; (c): SQ-10%; (d): SQ-15%
(a): CP-0; (b): CP-3%; (c): CP-5%; (d): CP-10%
(a): SQ-0; (b): SQ-3%; (c): SQ-5%; (d): SQ-10%