Citation: LIU Zhao, CHENG Li-jun, HU Xin, YUAN Shan-liang, BO Qi-fei, ZHANG Biao, JIANG Yi. Effect of Mg modification on the catalytic performance of Co/γ-Al2O3-TiO2 in the combustion of propane[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(7): 867-874. shu

Effect of Mg modification on the catalytic performance of Co/γ-Al2O3-TiO2 in the combustion of propane

  • Corresponding author: JIANG Yi, yjiang@cioc.ac.cn
  • Received Date: 2 July 2020
    Revised Date: 10 July 2020

    Fund Project: The project was supported by Sichuan Science and Technology Program (2018GZ0314) and Project of CAS "Light of West China" Program, 2014Sichuan Science and Technology Program 2018GZ0314

Figures(6)

  • A series of Mg-modified Co/MgO/γ-Al2O3-TiO2 catalysts were prepared by multi-step impregnation method and characterized by X-ray diffraction (XRD), diffuse reflectance visible ultra violet spectroscopy (DR-UV-vis), N2 adsorption-desorption, X-ray photoelectron spectroscopy (XPS) and H2 temperature-programmed reduction (H2-TPR); the effect of Mg modification on the catalytic performance of Co/MgO/γ-Al2O3-TiO2 in the combustion of propane was investigated. The results indicate that Co exists in the form of Co3O4 on both the pristine γ-Al2O3-TiO2 and Mg-modified MgO/γ-Al2O3-TiO2 supports; Mg added in the MgO/γ-Al2O3-TiO2 support interacts with Al2O3, forming MgAl2O4 spinel, which can improve the textural properties and promote the dispersion of Co3O4. Moreover, the interaction between MgAl2O4 and Co3O4 can increase the proportions of Co3+/Co2+ and Oads/Olatt on the catalyst surface, weaken the Co-O bond, and thereby enhance the activity of Co-based catalyst in propane combustion. For the propane combustion over the Co/MgO(15%)/γ-Al2O3-TiO2 catalyst with an Mg loading of 15%, the temperature to achieve a propane conversion of 90% is decreased by 45℃ in comparison with that over the Mg-free Co/γ-Al2O3-TiO2 catalyst; moreover, the Co/MgO(15%)/γ-Al2O3-TiO2 catalyst exhibits excellent stability and no decrease in the activity is observed in a 40 h continuous reaction test for propane combustion.
  • 加载中
    1. [1]

      HE C, CHENG J, ZHANG X, DOUTHWAITE M, PATTISSON S, HAO Z. Recent advances in the catalytic oxidation of volatile organic compounds:A review based on pollutant sorts and sources[J]. Chem Rev, 2019,119(7):4471-4568.  

    2. [2]

      KAMAL M S, RAZZAK S A, HOSSAIN M M. Catalytic oxidation of volatile organic compounds (VOCs) A review[J]. Atmos Environ, 2016,140:117-134.  

    3. [3]

      LIU Y R, LI X, LIAO W M, JIA A P, WANG Y J, LUO M F, LU J Q. Highly active Pt/BN catalysts for propane combustion:The roles of support and reactant-induced evolution of active Sites[J]. ACS Catal, 2019,9(2):1472-1481.  

    4. [4]

      RAO C, PENG C, PENG H, ZHANG L, LIU W, WANG X, ZHANG N, WU P. In situ embedded pseudo Pd-Sn solid solution in micropores silica with remarkable catalytic performance for CO and propane oxidation[J]. ACS Appl Mater Int, 2018,10(11):9220-9224.  

    5. [5]

      LEDWA K A, PAWLYTA M, KĘPIHSKI L. RuxCe1-xO2-y nanoparticles deposited on functionalized γ-Al2O3 as a thermally stable oxidation catalyst[J]. Appl Catal B:Environ, 2018,230:135-144.

    6. [6]

      HU Z, WANG Z, GUO Y, WANG L, GUO Y, ZHANG J, ZHAN W. Total oxidation of propane over a Ru/CeO2 catalyst at low temperature[J]. Environ Sci Technol, 2018,52(16):9531-9541.  

    7. [7]

      PIUMETTI M, FINO D, RUSSO N. Mesoporous manganese oxides prepared by solution combustion synthesis as catalysts for the total oxidation of VOCs[J]. Appl Catal B:Environ, 2015,163:277-287.  

    8. [8]

      CHENG L, WANG J, ZHANG C, JIN B, MEN Y. Boosting acetone oxidation efficiency over MnO2 nanorods by tailoring crystal phases[J]. New J Chem, 2019,43(48):19126-19136.  

    9. [9]

      ZHAO J, TANG Z, DONG F, ZHANG J. Controlled porous hollow Co3O4 polyhedral nanocages derived from metal-organic frameworks (MOFs) for toluene catalytic oxidation[J]. Mol Catal, 2019,463:77-86.  

    10. [10]

      TANG W, XIAO W, WANG S, REN Z, DING J, GAO P-X. Boosting catalytic propane oxidation over PGM-free Co3O4 nanocrystal aggregates through chemical leaching:A comparative study with Pt and Pd based catalysts[J]. Appl Catal B:Environ, 2018,226:585-595.

    11. [11]

      TSONCHEVA T, ISSA G, NIETO J M L, BLASCO T, CONCEPCION P, DIMITROV M, ATANASOVA G, KOVACHEVA D. Pore topology control of supported on mesoporous silicas copper and cerium oxide catalysts for ethyl acetate oxidation[J]. Microporous Mesoporous Mater, 2013,180:156-161.  

    12. [12]

      ZHANG X, JUNHUI Y, JING Y, TING C, BEI X, ZHE L, KUNFENG Z, LING Y, DANNONG H. Excellent low-temperature catalytic performance of nanosheet Co-Mn oxides for total benzene oxidation[J]. Appl Catal A:Gen, 2018,566:104-112.  

    13. [13]

      CAI T, YUAN J, ZHANG L, YANG L, TONG Q, GE M, XIAO B, ZHANG X, ZHAO K, HE D. Ni-Co-O solid solution dispersed nanocrystalline Co3O4 as a highly active catalyst for low-temperature propane combustion[J]. Catal Sci Technol, 2018,8(21):5416-5427.  

    14. [14]

      HU Z, QIU S, YOU Y, GUO Y, GUO Y, WANG L, ZHAN W, LU G. Hydrothermal synthesis of NiCeOx nanosheets and its application to the total oxidation of propane[J]. Appl Catal B:Environ, 2018,225:110-120.  

    15. [15]

      BENJAMIN F F, ALPHONSE P. Co-Mn-oxide spinel catalysts for CO and propane oxidation at mild temperature[J]. Appl Catal B:Environ, 2016,180:715-725.  

    16. [16]

      SOLSONA B, DAVIES T E, GARCIA T, V ZQUEZ I, DEJOZ A, TAYLOR S H. Total oxidation of propane using nanocrystalline cobalt oxide and supported cobalt oxide catalysts[J]. Appl Catal B:Environ, 2008,84(1/2):176-184.  

    17. [17]

      HU W, LI G, CHEN J, HUANG F, GONG M, ZHONG L, CHEN Y. Enhancement of activity and hydrothermal stability of Pd/ZrO2-Al2O3 doped by Mg for methane combustion under lean conditions[J]. Fuel, 2017,194:368-374.  

    18. [18]

      YUAN Shan-liang, LAN Hai, BO Qi-fei, ZHANG Biao, XIAO Xi, JIANG Yi. Effect of TiO2 doping on methane catalytic combustion deoxidation of CuMnCe/Al2O3 catalyst[J]. J Fuel Chem Technol, 2017,45(2):243-248.  

    19. [19]

      XIE Y, GUO Y, GUO Y, WANG L, ZHAN W, WANG Y, GONG X-Q, LU G. A highly-efficient La-MnOx catalyst for propane combustion:The promotional role of La and the effect of the preparation method[J]. Catal Sci Technol, 2016,6(23):8222-8233.  

    20. [20]

      ZHANG Lei, ZHOU Fu-xun, ZHAO Jian-tao, WU Zhi-wei, WANG Jian-guo, FANG Yi-tian. Reaction kinetics of methane combustion on copper-based catalyst[J]. J Fuel Chem Technol, 2014,42(9):1140-1145.  

    21. [21]

      YU J, LIU Z, ZHANG H, HUANG T, HAN J, ZHANG Y, CHONG D. Synergistic effect of N-and F-codoping on the structure and photocatalytic performance of TiO2[J]. J Environ Sci (China), 2015,28:148-156.  

    22. [22]

      LOJACONO M, VERBEEK J L, SCHUIT G C A. Magnetic and spectroscopic investigations on cobalt-alumina and cobalt-molybdenum-alumina:Electron spin resonance of the oxidized, sulfided, and reduced catalysts[J]. J Catal, 1973,29(3):463-474.  

    23. [23]

      BAI B, LI J. Positive effects of K+ ions on three-dimensional mesoporous Ag/Co3O4 catalyst for HCHO oxidation[J]. Acs Catal, 2014,4(8):2753-2762.  

    24. [24]

      GARCIA T, AGOURAM S, SÁNCHEZ-ROYO J F, MURILLO R, MASTRAL A M, ARANDA A, VÁZQUEZ I, DEJOZ A, SOLSONA B. Deep oxidation of volatile organic compounds using ordered cobalt oxides prepared by a nanocasting route[J]. Appl Catal A:Gen, 2010,386(1/2):16-27.  

    25. [25]

      MARCO J, GANCEDO J, GRACIA M, GAUTIER J, RIOS E, BERRY F. Characterization of the nickel cobaltite, NiCo2O4, prepared by several methods:An XRD, XANES, EXAFS, and XPS study[J]. J Solid State Chem, 2000,153(1):74-81.  

    26. [26]

      HUANG J, DING T, MA K, CAI J, SUN Z, TIAN Y, JIANG Z, ZHANG J, ZHENG L, LI X. Modification of Cu/SiO2 catalysts by La2O3 to quantitatively tune Cu+-Cu0 dual sites with improved catalytic activities and stabilities for dimethyl ether steam reforming[J]. ChemCatChem, 2018,10(17):3862-3871.  

    27. [27]

      LI X, LI X, ZENG X, ZHU T. Correlation between the physicochemical properties and catalytic performances of micro/mesoporous CoCeO mixed oxides for propane combustion[J]. Appl Catal A:Gen, 2019,572:61-70.  

    28. [28]

      ROUSSEAU S, LORIDANT S, DELICHERE P, BOREAVE A, DELOUME J, VERNOUX P. La(1-x)SrxCo1-yFeyO3 perovskites prepared by sol-gel method:Characterization and relationships with catalytic properties for total oxidation of toluene[J]. Appl Catal B:Environ, 2009,88(3/4):438-447.  

    29. [29]

      CHEN Z, WANG S, LIU W, GAO X, GAO D, WANG M, WANG S. Morphology-dependent performance of Co3O4 via facile and controllable synthesis for methane combustion[J]. Appl Catal A:Gen, 2016,525:94-102.  

    30. [30]

      HUANG Bo, LU Yi, JIANG Zhi-dong. Preparation of NiO/MgAl2O4 catalysts by ball-milling method for catalytic lean burn of high-diluted methane[J]. Fine Chem, 2020,37(6):1220-1226+1248.  

    31. [31]

      ZHANG W, WU F, LI J, YOU Z. Dispersion-precipitation synthesis of highly active nanosized Co3O4 for catalytic oxidation of carbon monoxide and propane[J]. Appl Surf Sci, 2017,411:136-143.  

    32. [32]

      LIU Q, WANG L C, CHEN M, CAO Y, HE H Y, FAN K N. Dry citrate-precursor synthesized nanocrystalline cobalt oxide as highly active catalyst for total oxidation of propane[J]. J Catal, 2009,263(1):104-113.  

    33. [33]

      NIU Ru-yue, LIU Peng-cheng, LI Wei, WANG Shuang, LI Jin-ping. Catalytic combustion of ventilation air methane over Co3O4 rectangular prism[J]. Chin J Inorg Chem, 2018,34(10):1929-1935.  

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    3. [3]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    4. [4]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    5. [5]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    6. [6]

      Linping Li Junhui Su Yanping Qiu Yangqin Gao Ning Li Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472

    7. [7]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    8. [8]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    9. [9]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    10. [10]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    11. [11]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    12. [12]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    13. [13]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    14. [14]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    15. [15]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    16. [16]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    17. [17]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    18. [18]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

    19. [19]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    20. [20]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

Metrics
  • PDF Downloads(6)
  • Abstract views(732)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return