Citation:
Cui Xiaoli. Flat Band Potential of Semiconductor Electrodes[J]. Chemistry,
;2017, 80(12): 1160-1171, 1175.
-
Flat band potential (Efb) is an important concept for the system of semiconductor/electrolyte solution. It is a potential when the band is at flat state. It is special characteristics to semiconductors and it can be measured by experiments such as Mott-Schottky curve and the measurement the relationship of photocurrent and applied potentials. Besides, the semiconductor type and its carrier density can be induced from the measurement of Efb. The band structure including the conductive or valence band position of semiconductor can be obtained from Efb. This is important for the photocatalysis and photoelectrochemical process of semiconductors, which are related to the applications of solar energy. In this paper, energy band bending of semiconductor and its influence factors are analyzed in detail. It is proposed that the Fermi energy is bended in the interface of semiconductors. Furthermore, the meaning, measurements and applications of Efb are summarized in order to help the students to understand and use it.
-
-
-
[1]
- [2]
-
[3]
-
[4]
C Jiang, S J A Moniz. A Wang et al. Chem. Soc. Rev., 2017, 46, 4645~4660.
-
[5]
M G Walter, E L Warren, J R McKone et al. Chem. Rev., 2010, 110:6446~6473.
-
[6]
- [7]
-
[8]
-
[9]
S Fukumoto, M Kitano, M Takeuchi et al. Catal. Lett., 2009, 127:39~43.
-
[10]
-
[11]
B Scrosati, L Fornarini, G Razzini et al. J. Electrochem. Soc., 1985, 132(3):593~598.
-
[12]
V Gondane, P Bhargava. Electrochim. Acta, 2016, 209:293~298.
-
[13]
P Xu, T J Milstein, T E Mallouk. ACS Appl. Mater. Interf., 2016, 8:11539~11547.
-
[14]
- [15]
-
[16]
L Giorgi, E Salernitano, T D Makris et al. Thin Solid Films, 2016, 601:28~34.
-
[17]
- [18]
- [19]
-
[20]
J Lim, P Murugan, N Lakshminarasimhan et al. J. Catal., 2014, 310:91~99.
-
[21]
W Yang, Y Oh, J Kim et al. ACS Appl. Mater. Interf., 2016, 8(1):425~431.
- [22]
-
[23]
T S Kang, K H Chun, J S Hong et al. J. Electrochem. Soc., 2000, 147(8):3049~3053.
-
[24]
- [25]
- [26]
-
[27]
Y Cong, H S Park, S Wang et al. J. Phys. Chem. C, 2012, 116(27):14541~14550.
- [28]
- [29]
-
[30]
D Xiong, Q Zhang, Z Du et al. New J. Chem., 2016, 40:6498~6504.
-
[31]
T Giannakopoulou, I Papailias, N Todorova et al. Chem. Eng. J., 2017, 310:571~580.
-
[32]
F S B Kafi, K M D C Jayathileka, R P Wijesundera et al. Phys. Status Solid B, 2016, 253(10):1965~1969.
-
[33]
P Shahbazi, A Kiani. Int. J. Hydrogen Energy, 2016, 41(39):17247~17256.
-
[1]
-
-
-
[1]
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
-
[2]
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
-
[3]
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
-
[4]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[5]
Qin Li , Ziyao Jia , Ye Chen , Mingze Ma , Lin Li , Tao Huang . A Journey into the Enigmatic World of Pickering Emulsion: A Chemical Science Popularization Experiment. University Chemistry, 2024, 39(9): 311-318. doi: 10.3866/PKU.DXHX202306035
-
[6]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[7]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[8]
Xia ZHANG , Yushi BAI , Xi CHANG , Han ZHANG , Haoyu ZHANG , Liman PENG , Shushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255
-
[9]
Yifan ZHAO , Qiyun MAO , Meijing GUO , Guoying ZHANG , Tongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001
-
[10]
Haitao Wang , Lianglang Yu , Jizhou Jiang , Arramel , Jing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047
-
[11]
Jiajia Wang , Sibo Huang , Xijing Gao , Chaoxun Liu , Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050
-
[12]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014
-
[13]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005
-
[14]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016
-
[15]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030
-
[16]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[17]
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
-
[18]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[19]
Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440
-
[20]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
-
[1]
Metrics
- PDF Downloads(2847)
- Abstract views(51257)
- HTML views(28653)