Citation: YANG Xi, SU Ya-xin, QIAN Wen-yan, YUAN Min-hao, ZHOU Hao, DENG Wen-yi, ZHAO Bing-tao. Experimental study on selective catalytic reduction of NO by C3H6 over Fe-Ag/Al2O3 catalysts[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(11): 1365-1375. shu

Experimental study on selective catalytic reduction of NO by C3H6 over Fe-Ag/Al2O3 catalysts

  • Corresponding author: SU Ya-xin, suyx@dhu.edu.cn
  • Received Date: 29 June 2017
    Revised Date: 1 September 2017

    Fund Project: The project was supported by the National Natural Science Foundation of China (51278095), Natural Science Foundation of Shanghai (17ZR1419300)and Jiangsu Province Prospective Joint Research Projects(BY2015032-02)the National Natural Science Foundation of China 51278095Natural Science Foundation of Shanghai 17ZR1419300Jiangsu Province Prospective Joint Research Projects BY2015032-02

Figures(9)

  • Sol-gel and impregnation methods were used to prepare the Fe/Ag/Al2O3 catalysts supported on the monolithic cordierite with different Fe/Ag loading ratios. The catalytic performance to reduce NO with C3H6 was evaluated in a one-dimensional electrically heated temperature programmed ceramic tubular reactor in simulated flue gas atmosphere at 200-700 ℃. The results show that the NO reduction efficiency on 7.2Fe/1.9Ag/20Al2O3/CM with C3H6 is more than 90% and reaches about 100% at the temperatures of 500 ℃ and 550 ℃ respectively. Iron can effectively improve the ability of Ag/20Al2O3/CM catalysts to resist SO2 and H2O in flue gas. When SO2 and H2O are 0.02% and 8% in the flue gas, the NO reduction efficiency is almost not influenced on 7.2Fe/1.9Ag/20Al2O3/CM at 500 ℃. The 90% NO reduction efficiency is maintained during 6 h without decrease. However, the catalytic activity of 2Ag/20Al2O3/CM without iron modification is strongly influenced by SO2 and H2O in the flue gas. The NO reduction efficiency on Ag/20Al2O3/CM decreases rapidly from about 70% to 46% and 25% respectively, when the SO2 and H2O are 0.02% and 8% in the flue gas. The results of XRD and SEM of the catalyst show that AgFeO2 and Fe3+ are formed in the 7.2Fe/1.9Ag/20Al2O3/CM catalyst after the modification by iron, and the surface of the catalyst become loose and porous, forming Fe3O4-based needle-like and flaky crystals. H2-TPR results show that 7.2Fe/1.9Ag/20Al2O3/CM has better reduction properties than Ag/20Al2O3/CM in the wider temperature range. Pyridine adsorption Infrared Spectroscopy (Py-FTIR) experimental results show that Fe increases the Lewis acid sites in the catalyst surface.
  • 加载中
    1. [1]

      HELD W, KÖNIG A, RICHTER T, PUPPE L. Catalytic NOx reduction in net oxidizing exhaust gas[J]. SAE Trans, 1990,99(4):209-216.  

    2. [2]

      MIYADERA T, YOSHIDA K. Alumina-supported catalysts for the selective reduction of nitric oxide by propene[J]. Chem Lett, 1993,2(9):1483-1486.  

    3. [3]

      WANG J, HE H, FENG Q, YU Y, YOSHIDA K. Selective catalytic reduction of NOx with C3H6 over an Ag/Al2O3 catalyst with a small quantity of noble metal[J]. Catal Today, 2004,93-95:783-789. doi: 10.1016/j.cattod.2004.06.071

    4. [4]

      CHAIEB T, DELANNOY L, LOUIS C, THOMAS C. On the origin of the optimum loading of Ag on Al2O3 in the C3H6-SCR of NOx[J]. Appl Catal B:Environ, 2013,142-143:780-784. doi: 10.1016/j.apcatb.2013.06.010

    5. [5]

      THOMAS C. On an additional promoting role of hydrogen in the H2-assisted C3H6-SCR of NOx on Ag/Al2O3:A lowering of the temperature of formation-decomposition of the organo-NOx intermediates[J]. Appl Catal B:Environ, 2015,162:454-462. doi: 10.1016/j.apcatb.2014.07.021

    6. [6]

      KIM P S, KIM M K, CHO B K, NAM I S, OH S H. Effect of H2 on deNOx performance of HC-SCR over Ag/Al2O3:Morphological, chemical, and kinetic changes[J]. J Catal, 2013,301(5):65-76.  

    7. [7]

      XIE S, WANG J, HE H. Poisoning effect of sulphate on the selective catalytic reduction of NOx by C3H6 over Ag-Pd/Al2O3[J]. J Mol Catal A:Chem, 2007,266(1/2):166-172.  

    8. [8]

      BURCH R, WATLING T C. The effect of promoters on Pt/Al2O3 catalysts for the reduction of NO by C3H6 under lean-burn conditions[J]. Appl Catal B:Environ, 1997,11(2):207-216. doi: 10.1016/S0926-3373(96)00043-4

    9. [9]

      SALEM I, COURTOIS X, CORBOS E C, MARECOT P, DUPREZ D. NO conversion in presence of O2, H2O and SO2:Improvement of a Pt/Al2O3 catalyst by Zr and Sn, and influence of the reducer C3H6 or C3H8[J]. Catal Commun, 2008,9(5):664-669. doi: 10.1016/j.catcom.2007.07.034

    10. [10]

      GOULA M A, CHARISIOU N D, PAPAGERIDIS K N, DELIMITIS A, PAPISTA E, PACKATOURIDOU E, ILIOPOULOU E F, MARNELLOS G, KONSOLAKIS M, YENTEKIS I V. A comparative study of the H2-assisted selective catalytic reduction of nitric oxide by propene over noble metal (Pt, Pd, Ir)/γ-Al2O3 catalysts[J]. J Environ Chem Eng, 2016,4(2):1629-1641. doi: 10.1016/j.jece.2016.02.025

    11. [11]

      MORE P M, NGUYEN D L, DONARE M K, UMBARKAR S B, GRANGER P, DUJARDIN C. Activation by pretreatment of Ag-Au/Al2O3 bimetallic catalyst to improve low temperature HC-SCR of NOx for lean burn engine exhaust[J]. Appl Catal B:Environ, 2015,174:145-156.  

    12. [12]

      MORE P M, NGUYEN D L, DONGARE M K, UMBARKAR S B, NUNS N, GIRARDON J S, DUJARDIN C, LANCELOT C, MAMEDE A S, GRANGER P. Rational preparation of Ag and Au bimetallic catalysts for the hydrocarbon-SCR of NOx:Sequential deposition vs. coprecipitation method[J]. Appl Catal B:Environ, 2015,162:11-20. doi: 10.1016/j.apcatb.2014.06.031

    13. [13]

      MORE P M, JAGTAP N, KULAL A B, DONGARE M K, UMBARKER S B. Magnesia doped Ag/Al2O3-Sulfur tolerant catalyst for low temperature HC-SCR of NOx[J]. Appl Catal B:Environ, 2014,144:408-415. doi: 10.1016/j.apcatb.2013.07.044

    14. [14]

      ZHOU Hao, LIAO Wen-yu, SU Ya-xin, LIN Xin-yue. Influence of H2O and SO2 on NO reduction by methane on the surface of iron[J]. Clean Coal Technol, 2015,21(2):51-55.  

    15. [15]

      ZHOU H, SU Y X, LIAO W Y, ZHONG F C. NO reduction by propane over monolithic cordierite-based Fe/Al2O3 catalyst:Reaction mechanism and effect of H2O/SO2[J]. Fuel, 2016,182:352-360. doi: 10.1016/j.fuel.2016.05.116

    16. [16]

      ZHOU H, SU Y X, LIAO W Y, ZHONG F C. Preparation, characterization, and properties of monolithic Fe/Al2O3/cordierite catalysts for NO reduction with C2H6[J]. Appl Catal A:Gen, 2015,505:402-409. doi: 10.1016/j.apcata.2015.08.025

    17. [17]

      KYRⅡENKO P, POPOVYCH N, SOLOVIEV S, ORLYK S, DZWIGAJ S. Remarkable Activity of Ag/Al2O3/cordierite catalysts in SCR of NO with ethanol and butanol[J]. Appl Catal B:Environ, 2013,140/141(2):691-699.  

    18. [18]

      SU Ya-xin, REN Li-ming, SU A-long, DENG Wen-yi. NO reduction by methane on the surface of iron oxides[J]. J Fuel Chem Technol, 2013,41(11):1393-1400.  

    19. [19]

      SU Ya-xin, LU Zhe-xing, ZHOU Hao, DOU Yi-feng, DENG Wen-yi. Experimental study on NO reduction by propane over iron[J]. J Fuel Chem Technol, 2014,42(12):1470-1477. doi: 10.3969/j.issn.0253-2409.2014.12.009 

    20. [20]

      DOU Yi-feng, SU Ya-xin, LU Zhe-xing, ZHOU Hao, DENG Wen-yi. Experimental study of NO reduction by ethane over iron[J]. J Fuel Chem Technol, 2015,42(10):1273-1280. doi: 10.3969/j.issn.0253-2409.2015.10.017 

    21. [21]

      ZHOU H, LI K K, ZHAO B T, DENG W Y, SU Y X, ZHONG F C. Surface properties and reactivity of Fe/Al2O3/cordierite catalysts for NO reduction by C2H6:Effects of calcination temperature[J]. Chem Eng J, 2017,326:737-744. doi: 10.1016/j.cej.2017.06.018

    22. [22]

      PUJILAKSONO B, JONSSON T, HALVARSSON M, SVENSSON J E, JOHANSSON L G. Oxidation of iron at 400-600℃ in dry and wet O[J]. Corros Sci, 2010,52(5):1560-1569. doi: 10.1016/j.corsci.2010.01.002

    23. [23]

      SU J H, LIU Q Y, LIU Z Y, HUANG Z G. Honeycomb CuO/Al2O3/cordierite catalyst for selective catalytic reduction of NO by NH3-Effect of Al2O3 coating[J]. Ind Eng Chem Res, 2008,47(13):4295-4301. doi: 10.1021/ie800105p

    24. [24]

      KYRⅡENKO P, POPOVYCH N, SOLOVIEV S, ORLYK S, DZWIGAJ S. Remarkable Activity of Ag/Al2O3/cordierite catalysts in SCR of NO with ethanol and butanol[J]. Appl Catal B:Environ, 2013,140-141(2):691-699.  

    25. [25]

      KUL'KO E V, IVANOVA A S, LITVAK G S, KRYUKOVA G N, TSYBULYA S V. Preparation and microstruc-tural and textural characterization of single-phase aluminum oxides[J]. Kinet Catal, 2004,45(5):714-721. doi: 10.1023/B:KICA.0000044984.09163.80

    26. [26]

      KOUOTOU P M, TIAN Z Y, VIEKER H, BEYER A, GÖLZHÄUSER A, KOHSEHÖINGHAUS K. Selective Synthesis ofα-Fe2O3 thin films and effect of the deposition temperature and lattice oxygen on the catalytic combustion of propene[J]. J Mater Chem A, 2013,1(35):10495-10504. doi: 10.1039/c3ta11354j

    27. [27]

      GONZÁLEZ-VELASCO J R, FERRET R, LÓPEZ-FONSECA R, GUTIÉRREZ-ORTIZ M A. Influence of particle size distribution of precursor oxides on the synthesis of cordierite by solid-state reaction[J]. Powder Technol, 2005,153(1):34-42. doi: 10.1016/j.powtec.2005.01.022

    28. [28]

      POPOVICH N A, KIRⅡENKO P I, SOLOV'EV S A, ORLIK S N, DZWIGAJ S. Role of active components of an Ag/Al2O3/cordierite catalyst in selective reduction of NO by ethanol[J]. Theor Exp Chem, 2012,48(4):258-264. doi: 10.1007/s11237-012-9270-x

    29. [29]

      SATOSHI S, MIKA S, MASATAKA F. Enhancing effect of water vapor on the reduction of lean NOx by ethanol over an Ag/Al2O3 catalyst supported on cordierite honeycomb[J]. React Kinet Catal Lett, 1998,64(2):239-246. doi: 10.1007/BF02475340

    30. [30]

      ZHANG R, KALIAGUINE S. Lean reduction of NO by C3H6 over Ag/alumina derived from Al2O3, AlOOH and Al(OH)3[J]. Appl Catal B:Environ, 2008,78(3/4):275-287.  

    31. [31]

      RIEDEL T, CLAEYS M, SCHULZ H, SCHAUB G, NAM S S, JUN K W, CHOI M J, KISHAN G, LEE K W. Comparative study of Fischer-Tropsch synthesis with H2/CO and H2/CO2 syngas using Fe-and Co-based catalysts[J]. Appl Catal A:Gen, 1999,186(1/2):201-213.  

    32. [32]

      LI J H, ZHU Y Q, RUI K, HAO J M. Improvement of catalytic activity and sulfur-resistance of Ag/TiO2-Al2O3 for NO reduction with propene under lean burn conditions[J]. Appl Catal B:Environ, 2008,80(3):202-213.  

    33. [33]

      WILLIAMS M F, FONFÉ B, SIEVERS C. Hydrogenation of tetralin on silica-alumina-supported Pt catalysts Ⅰ. Physicochemical characterization of the catalytic materials[J]. J Catal, 2012,251(2):485-496.  

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    3. [3]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    4. [4]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    5. [5]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    6. [6]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    7. [7]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    8. [8]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    11. [11]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    12. [12]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    13. [13]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    14. [14]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    15. [15]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    16. [16]

      Xiaofang Li Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080

    17. [17]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    18. [18]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    19. [19]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    20. [20]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

Metrics
  • PDF Downloads(1)
  • Abstract views(662)
  • HTML views(87)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return