Citation: HUANG Peng, LIU Min, CHANG Qiu-lian. MoO3/Al-SBA-15 modified catalyst and its application in coal tar hydrocracking[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(9): 1079-1086. shu

MoO3/Al-SBA-15 modified catalyst and its application in coal tar hydrocracking

  • Corresponding author: HUANG Peng, squallok@qq.com
  • Received Date: 13 August 2020
    Revised Date: 1 September 2020

    Fund Project: The project was supported by the National Key Research and Development Project 2017YFB0602803the Natural Science Foundation of Beijing 2182090The project was supported by the National Key Research and Development Project (2017YFB0602803) and the Natural Science Foundation of Beijing(2182090)

Figures(8)

  • A series MoO3/Al-SBA-15 catalysts modified by HCl were prepared by evaporation induction method. The catalysts were characterized by XRD, BET, TEM and NH3-TPD. The results showed that the modification of the catalyst retained the hexagonal structure of SBA-15 with ordered pore structure. The pore size of the modified samples was about 8 nm with wall thickness of about 4 nm. The catalysts were typical mesoporous molecular sieves over which the active components were well distributed. The Al-SBA-15 loaded with MoO3 had good hydrocracking activity after prevulcanization. Under the condition of 14.9% MoO3 loading, the total yield of naphtha and aviation kerosene fraction was 79.21%. The naphtha had the highest aromatic potential of 72.4, which was an excellent feedstock for reforming to produce aromatics. The high BMCI value of the cracked tail oil was not suitable for ethylene production by cracking.
  • 加载中
    1. [1]

      LI Li-quan. Process Calculation and Technical Analysis of Hydro Cracking Unit[M]. Beijing:China Petrochemical Press, 2009.

    2. [2]

      XU Jie, WU Tao, CHEN Sheng-li, YUAN Gui-mei. Research progress of hydrocracking of diesel to produce BTX[J]. Ind Catal, 2018,26(2):15-22.  

    3. [3]

      PENG C, FANG X C, ZENG R H, GUO R, HAO W Y. Commercial analysis of catalytic hydroprocessing technologies in producing diesel and gasoline by light cycle oil[J]. Catal Today, 2016,276(1):11-18.  

    4. [4]

      HUANG P, ZHANG X J, MAO X F. Research on the production of aromatic hydrocarbon via hydroreforming a light fraction in direct coal liquefaction oil[J]. Energy Fuels, 2015,29(1):86-90. doi: 10.1021/ef502146a

    5. [5]

      HATA Y, HAYASHIZAKI H, TAKAFUMI T, KANEHASHI K. Structural analysis of primary coal Tar by FD-MS[J]. J Iron Steel Inst, 2019,105(6):601-609. doi: 10.2355/tetsutohagane.TETSU-2018-134

    6. [6]

      HUANG Peng, LI Wen-bo, MAO Xue-feng, MA Bo-wen. Study on preparation of high aromatic potential naphtha from pyrolysis heavy oil via hydrocracking[J]. J Fuel Chem Technol, 2019,47(11):1329-1336.  

    7. [7]

      WANG Ze-yang, WANG Long-yan. Analysis on characteristics of coal-based vehicle fuels and development of coal-to-liquids industry[J]. Chem Ind Eng Prog, 2019,38(7):3079-3088.  

    8. [8]

      CAO Hong-wei, LI Yue-ting, WANG Teng-da, ZHANG Xiang-wen, LI Guo-zhu. Process of upgrading diret coal liquefaction oil to aerospace fuel[J]. Chin J Energ Mater, 2020(5):376-381.  

    9. [9]

      INAMURAL K, KAGAMI N, SHIRAKAWA T, EURA S, WATABE M. Improvement in hydrocracking activity of heavy oil upgrading catalyst by modifications to some specific properties of Y-zeolite[J]. Res Chem Intermed, 2015,41(12):1-11.  

    10. [10]

      HAN Bao-zhai. Study on the modification of Y zeolite for hydrocracking catalysts[D]. Beijing: China University of Petroleum, 2017. 

    11. [11]

      DIDI D A, LUQMAN B, GIVENI C S, RESTI N U. Preparation, characterization, and activation of Co-Mo/Y zeolite catalyst for coal tar conversion to liquid fuel[J]. Bull Chem React Eng Catal, 2017,12(2):219-226. doi: 10.9767/bcrec.12.2.768.219-226

    12. [12]

      MARAKATTI V S, PETER S C. Nickel-antimony nanoparticles confined in SBA-15 as highly efficient catalysts for the hydrogenation of nitroarenes[J]. New J Chem, 2016,40(6):5448-5457. doi: 10.1039/C5NJ03479E

    13. [13]

      LEI Z P, GAO L J, SHUI H F, CHEN W L, WANG Z C, REN S B. Hydrotreatment of heavy oil from a direct coal liquefaction process on sulfided Ni-W/SBA-15 catalysts[J]. Fuel Process Technol, 2011,92(10):2055-2060. doi: 10.1016/j.fuproc.2011.06.007

    14. [14]

      WANG L, LI J, WANG L, CHU S, YANG L. Synthesis of core-shell HZSM-5@SBA-15 composite and its performance in the conversion of methanol to aromatics[J]. China Pet Process Petrochem Technol, 2018,20(1):16-24.  

    15. [15]

      GAI Yuan-yuan, LI Hai-tao, LI Jian-fa, SUN Rui-xia. Catalytic performance of Zr-MCM-41 and Zr-SBA-15 catalysts for cinnamaldehyde MPV transfer hydrogenation[J]. Ind Catal, 2018,26(12):61-66.  

    16. [16]

      LI Xiang-zhen, WANG Xiao-zhong, LIU Yu, CHEN Wei, HUANG Lu. Research progress in the synthesis of mesoporous Al-SBA-15 material[J]. Chem Ind Eng Prog, 2013,32(7):1555-1563.  

    17. [17]

      SAUL P B, PERLA B B, GUSTAVO E, RAMIREZ C. Surface structure and acidity properties of mesoporous silica SBA-15 modified with aluminum and titanium:First-principles calculations[J]. J Phys Chem C, 2016,120(32):18105-18114. doi: 10.1021/acs.jpcc.6b05630

    18. [18]

      LUZ G E, LIMA F C A, NETO C O C, PAZ G L, SILVA E F B, BARBOSA M N. Determination of SBA-15 acidity through n-butyl amine TPD:A theoretical and experimental study[J]. J Mater Sci, 2013,48(20):6885-6890. doi: 10.1007/s10853-013-7492-5

    19. [19]

      Tian Zhi-ming. Preparation, characterization and catalytic performance of acid-modified SBA-15 mesoporous materials[D]. Dalian: Dalian University of Technology, 2008. 

    20. [20]

      DING Zhi-jie, CHEN Jun-hua, GONG Xu-zhong, CHENG Nian-shou. Effect of different kinds of acid and their concentration on mesostructure and morphology of ordered mesoporous molucular sieve SBA-15[J]. J Chin Silic Soc, 2008(7):978-984.  

    21. [21]

      CAO Zheng-kai, HUO Hai-feng, WU Zi-ming. Study on the impact of mixing FCC diesel on the performance of hydrocracking unit[J]. Pet Refin Eng, 2018,48(5):26-31.  

    22. [22]

      MARK S, STEPHEN O B, STEPHAN S, GALEN D S. Hydrothermal and postsynthesis surface modification of cubic, MCM-48, and ultralarge pore SBA-15 mesoporous silica with titanium[J]. Chem Mater, 2000,12(4):898-911. doi: 10.1021/cm9901663

    23. [23]

      ZHAO D Y FENG J L, HUO Q S, NICHOLAS M, GLENN H, FREDRICKSON , BRADLEY F C, GALEN D S. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science, 1998,279(5350):548-552. doi: 10.1126/science.279.5350.548

    24. [24]

      ZHAO D S, HUO Q S, FENG J L, BRADLEY F C, GALEN D S. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures[J]. J Am Chem Soc, 1998,120(24):6024-6036. doi: 10.1021/ja974025i

    25. [25]

      SRINIVAS D, SRIVASTAVA R, RATNASAMY P. Transesterification over titanosilicate molecular sieves[J]. Catal Today, 2004,96(3):127-133. doi: 10.1016/j.cattod.2004.06.113

    26. [26]

      LIU C H, GAO X H, ZhANG Z D, ZHANG H T, SUN S H, DENG Y Q. Surface modification of zeolite Y and mechanism for reducing naphtha olefin formation in catalytic cracking reaction[J]. Appl Catal A:Gen, 2004,264(2):225-228. doi: 10.1016/j.apcata.2003.12.048

    27. [27]

      YORI J C, KRASNOGOR L M, CASTRO A A. Correlation between acid Strength(H0) and ammonia desorption temperature for aluminas and silica-aluminas[J]. React Kinet Catal Lett, 1986,32(1):27-32. doi: 10.1007/BF02063445

    28. [28]

      CHENG Jun-jie, LI Zhen-rong, ZHAO Liang-fu. Catalytic performance of Ni-W supported on micro-mesoporous Hβ/Al-SBA-15 composite molecular sieves in the hydrocracking of naphthalene to BTX[J]. J Fuel Chem Technol, 2017,45(1):93-99.  

    29. [29]

      LI X P, ZHANG J G, LIU B, LIU J P, WANG C B, CHEN G Y. Hydrodeoxygenation of lignin-derived phenols to produce hydrocarbons over Ni/Al-SBA-15 prepared with different impregnants[J]. Fuel, 2018,20(1):16-24.  

    30. [30]

      WANG Feng. Optimization and economic analysis of ethylene cracking feedstock produced in refinery[J]. Contemp Chem Ind, 2014(2):243-245.  

    31. [31]

      WANG Han-song. Ethylene Process and Technology[M]. Beijing:China Petrochemical Press, 2012.

  • 加载中
    1. [1]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    2. [2]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    3. [3]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    6. [6]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    7. [7]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

Metrics
  • PDF Downloads(2)
  • Abstract views(1144)
  • HTML views(208)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return