MoO3/Al-SBA-15 modified catalyst and its application in coal tar hydrocracking
- Corresponding author: HUANG Peng, squallok@qq.com
Citation:
HUANG Peng, LIU Min, CHANG Qiu-lian. MoO3/Al-SBA-15 modified catalyst and its application in coal tar hydrocracking[J]. Journal of Fuel Chemistry and Technology,
;2020, 48(9): 1079-1086.
LI Li-quan. Process Calculation and Technical Analysis of Hydro Cracking Unit[M]. Beijing:China Petrochemical Press, 2009.
XU Jie, WU Tao, CHEN Sheng-li, YUAN Gui-mei. Research progress of hydrocracking of diesel to produce BTX[J]. Ind Catal, 2018,26(2):15-22.
PENG C, FANG X C, ZENG R H, GUO R, HAO W Y. Commercial analysis of catalytic hydroprocessing technologies in producing diesel and gasoline by light cycle oil[J]. Catal Today, 2016,276(1):11-18.
HUANG P, ZHANG X J, MAO X F. Research on the production of aromatic hydrocarbon via hydroreforming a light fraction in direct coal liquefaction oil[J]. Energy Fuels, 2015,29(1):86-90. doi: 10.1021/ef502146a
HATA Y, HAYASHIZAKI H, TAKAFUMI T, KANEHASHI K. Structural analysis of primary coal Tar by FD-MS[J]. J Iron Steel Inst, 2019,105(6):601-609. doi: 10.2355/tetsutohagane.TETSU-2018-134
HUANG Peng, LI Wen-bo, MAO Xue-feng, MA Bo-wen. Study on preparation of high aromatic potential naphtha from pyrolysis heavy oil via hydrocracking[J]. J Fuel Chem Technol, 2019,47(11):1329-1336.
WANG Ze-yang, WANG Long-yan. Analysis on characteristics of coal-based vehicle fuels and development of coal-to-liquids industry[J]. Chem Ind Eng Prog, 2019,38(7):3079-3088.
CAO Hong-wei, LI Yue-ting, WANG Teng-da, ZHANG Xiang-wen, LI Guo-zhu. Process of upgrading diret coal liquefaction oil to aerospace fuel[J]. Chin J Energ Mater, 2020(5):376-381.
INAMURAL K, KAGAMI N, SHIRAKAWA T, EURA S, WATABE M. Improvement in hydrocracking activity of heavy oil upgrading catalyst by modifications to some specific properties of Y-zeolite[J]. Res Chem Intermed, 2015,41(12):1-11.
HAN Bao-zhai. Study on the modification of Y zeolite for hydrocracking catalysts[D]. Beijing: China University of Petroleum, 2017.
DIDI D A, LUQMAN B, GIVENI C S, RESTI N U. Preparation, characterization, and activation of Co-Mo/Y zeolite catalyst for coal tar conversion to liquid fuel[J]. Bull Chem React Eng Catal, 2017,12(2):219-226. doi: 10.9767/bcrec.12.2.768.219-226
MARAKATTI V S, PETER S C. Nickel-antimony nanoparticles confined in SBA-15 as highly efficient catalysts for the hydrogenation of nitroarenes[J]. New J Chem, 2016,40(6):5448-5457. doi: 10.1039/C5NJ03479E
LEI Z P, GAO L J, SHUI H F, CHEN W L, WANG Z C, REN S B. Hydrotreatment of heavy oil from a direct coal liquefaction process on sulfided Ni-W/SBA-15 catalysts[J]. Fuel Process Technol, 2011,92(10):2055-2060. doi: 10.1016/j.fuproc.2011.06.007
WANG L, LI J, WANG L, CHU S, YANG L. Synthesis of core-shell HZSM-5@SBA-15 composite and its performance in the conversion of methanol to aromatics[J]. China Pet Process Petrochem Technol, 2018,20(1):16-24.
GAI Yuan-yuan, LI Hai-tao, LI Jian-fa, SUN Rui-xia. Catalytic performance of Zr-MCM-41 and Zr-SBA-15 catalysts for cinnamaldehyde MPV transfer hydrogenation[J]. Ind Catal, 2018,26(12):61-66.
LI Xiang-zhen, WANG Xiao-zhong, LIU Yu, CHEN Wei, HUANG Lu. Research progress in the synthesis of mesoporous Al-SBA-15 material[J]. Chem Ind Eng Prog, 2013,32(7):1555-1563.
SAUL P B, PERLA B B, GUSTAVO E, RAMIREZ C. Surface structure and acidity properties of mesoporous silica SBA-15 modified with aluminum and titanium:First-principles calculations[J]. J Phys Chem C, 2016,120(32):18105-18114. doi: 10.1021/acs.jpcc.6b05630
LUZ G E, LIMA F C A, NETO C O C, PAZ G L, SILVA E F B, BARBOSA M N. Determination of SBA-15 acidity through n-butyl amine TPD:A theoretical and experimental study[J]. J Mater Sci, 2013,48(20):6885-6890. doi: 10.1007/s10853-013-7492-5
Tian Zhi-ming. Preparation, characterization and catalytic performance of acid-modified SBA-15 mesoporous materials[D]. Dalian: Dalian University of Technology, 2008.
DING Zhi-jie, CHEN Jun-hua, GONG Xu-zhong, CHENG Nian-shou. Effect of different kinds of acid and their concentration on mesostructure and morphology of ordered mesoporous molucular sieve SBA-15[J]. J Chin Silic Soc, 2008(7):978-984.
CAO Zheng-kai, HUO Hai-feng, WU Zi-ming. Study on the impact of mixing FCC diesel on the performance of hydrocracking unit[J]. Pet Refin Eng, 2018,48(5):26-31.
MARK S, STEPHEN O B, STEPHAN S, GALEN D S. Hydrothermal and postsynthesis surface modification of cubic, MCM-48, and ultralarge pore SBA-15 mesoporous silica with titanium[J]. Chem Mater, 2000,12(4):898-911. doi: 10.1021/cm9901663
ZHAO D Y FENG J L, HUO Q S, NICHOLAS M, GLENN H, FREDRICKSON , BRADLEY F C, GALEN D S. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science, 1998,279(5350):548-552. doi: 10.1126/science.279.5350.548
ZHAO D S, HUO Q S, FENG J L, BRADLEY F C, GALEN D S. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures[J]. J Am Chem Soc, 1998,120(24):6024-6036. doi: 10.1021/ja974025i
SRINIVAS D, SRIVASTAVA R, RATNASAMY P. Transesterification over titanosilicate molecular sieves[J]. Catal Today, 2004,96(3):127-133. doi: 10.1016/j.cattod.2004.06.113
LIU C H, GAO X H, ZhANG Z D, ZHANG H T, SUN S H, DENG Y Q. Surface modification of zeolite Y and mechanism for reducing naphtha olefin formation in catalytic cracking reaction[J]. Appl Catal A:Gen, 2004,264(2):225-228. doi: 10.1016/j.apcata.2003.12.048
YORI J C, KRASNOGOR L M, CASTRO A A. Correlation between acid Strength(H0) and ammonia desorption temperature for aluminas and silica-aluminas[J]. React Kinet Catal Lett, 1986,32(1):27-32. doi: 10.1007/BF02063445
CHENG Jun-jie, LI Zhen-rong, ZHAO Liang-fu. Catalytic performance of Ni-W supported on micro-mesoporous Hβ/Al-SBA-15 composite molecular sieves in the hydrocracking of naphthalene to BTX[J]. J Fuel Chem Technol, 2017,45(1):93-99.
LI X P, ZHANG J G, LIU B, LIU J P, WANG C B, CHEN G Y. Hydrodeoxygenation of lignin-derived phenols to produce hydrocarbons over Ni/Al-SBA-15 prepared with different impregnants[J]. Fuel, 2018,20(1):16-24.
WANG Feng. Optimization and economic analysis of ethylene cracking feedstock produced in refinery[J]. Contemp Chem Ind, 2014(2):243-245.
WANG Han-song. Ethylene Process and Technology[M]. Beijing:China Petrochemical Press, 2012.
Rui Gao , Ying Zhou , Yifan Hu , Siyuan Chen , Shouhong Xu , Qianfu Luo , Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
Zhongyan Cao , Shengnan Jin , Yuxia Wang , Yiyi Chen , Xianqiang Kong , Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
1: H2 compressor; 2: raw material tank; 3: water tank; 4: flowmeter; 5: feed pump; 6: water pump; 7: pre-hydrorefining reactor; 8: hydrocracking reactor; 9: separator; 10: pruduct oil; 11: caustic tank; 12: wet gas flowmeter
1#: Al-SBA-15; 2#: MoO3/Al-SBA-15 (MoO3 w/%=5.1); 3#: MoO3/Al-SBA-15 (MoO3 w/%=9.9); 4#: MoO3/Al-SBA-15 MoO3 w/%=14.9); 5#: MoO3/Al-SBA-15 (MoO3 w/%=20.1)
1#: Al-SBA-15; 2#: MoO3/Al-SBA-15 (MoO3 w/%=5.1); 3#: MoO3/Al-SBA-15 (MoO3 w/%=9.9); 4#: MoO3/Al-SBA-15 MoO3 w/%=14.9); 5#: MoO3/Al-SBA-15 (MoO3 w/%=20.1)
1#: Al-SBA-15; 2#: MoO3/Al-SBA-15 (MoO3 w/%=5.1); 3#: MoO3/Al-SBA-15 (MoO3 w/%=9.9); 4#: MoO3/Al-SBA-15 MoO3 w/%=14.9); 5#: MoO3/Al-SBA-15 (MoO3 w/%=20.1)
1#: Al-SBA-15; 2#: MoO3/Al-SBA-15 (MoO3 w/%=5.1); 3#: MoO3/Al-SBA-15 (MoO3 w/%=9.9); 4#: MoO3/Al-SBA-15 MoO3 w/%=14.9); 5#: MoO3/Al-SBA-15 (MoO3 w/%=20.1)
(a): 3#, perpendicular to channels; (b): 3#, parallel to channels; (c): 4#, perpendicular to channels; (d): 4#, parallel to channels
1#: Al-SBA-15; 2#: MoO3/Al-SBA-15 (MoO3 w/%=5.1); 3#: MoO3/Al-SBA-15 (MoO3 w/%=9.9); 4#: MoO3/Al-SBA-15 MoO3 w/%=14.9); 5#: MoO3/Al-SBA-15 (MoO3 w/%=20.1)