Citation: CHEN Xing-yue, SHI Yi-ming, LIU Dan, DAI Cheng-yi, MA Xiao-xun. Catalytic performance of surface silicon-rich ZSM-5 zeolites in the co-production of lower olefins and p-xylene from methanol[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(4): 495-504. shu

Catalytic performance of surface silicon-rich ZSM-5 zeolites in the co-production of lower olefins and p-xylene from methanol

  • Corresponding author: MA Xiao-xun, maxym@nwu.edu.cn
  • Received Date: 22 January 2020
    Revised Date: 18 March 2020

Figures(6)

  • Surface silicon-rich ZSM-5 zeolites were prepared by surface chemical modification; their pore structure and acid properties were characterized by XRD, nitrogen sorption, TEM, NH3-TPD and Py-FTIR spectroscopy. The catalytic performance of modified ZSM-5 zeolites in the conversion of methanol to p-xylene and lower olefins was investigated. The results show that the introduction of Zn in ZSM-5 can change part of the strong acid sites into the medium ones and increase the Zn-Lewis acid sites with dehydrogenation capacity, which can enhance the selectivity to ethene and propene. The modification with Mg can not only adjust the pore shape selectivity, but also increase the amount of Lewis acid sites, which is beneficial to the formation of p-xylene. Through multiple silicon depositions from different silicon sources, SiO2 is uniformly deposited on the outer surface of modified ZSM-5 catalysts, which can modulate the acid properties and pore structure and thereby further improve the selectivity to p-xylene and ethene and propene. By using these modification approaches, the selectivity to p-xylene and ethene and propene reaches 61%, with 87.1% of p-xylene in the xylenes product, 97.8% of ethene in C2 hydrocarbons, and 90.6% of propene in C3 hydrocarbons.
  • 加载中
    1. [1]

      WU Chuan, WANG Jing-yi, LU Jun-yue, WANG Xiao-dong, LIU Bao-he, HUANG Pei, SHI Jun. Research progress on separation for para-xylene[J]. J Nanjing Univ Technol, 2002,24(3):106-110.  

    2. [2]

      FENG Zhi-qiang. PX crystallization separation technology and reconstruction of aromatic plant[J]. Mod Chem Ind, 2015,35(4):142-145.  

    3. [3]

      HAO Xi-wei, LIU Qiu-fang, LIU Gong, ZHANG Ya-qin, ZHANG Shi-gang. Progress and prospect of p-xylene production technologies[J]. Clean Coal Technol, 2016,22(5):25-30.  

    4. [4]

      WU Wei. Advances and development of aromatics production technologies for an aromatics complex[J]. Acta Pet Sin(Pet Process Sect), 2013,31(2):275-281.  

    5. [5]

      KONG De-jin, YANG Wei-min. Advance in technology for production of aromatic hydrocarbons[J]. Chem Ind Eng Prog, 2011,30(1):16-25.  

    6. [6]

      CHEN Liang, XIAO Jian, XIE Zai-ku, YU Jian-guo. Advances in p-xylene separation by crystalization[J]. Mod Chem Ind, 2009,29(2):10-14.  

    7. [7]

      FAN Jing-xin, YU Hai-bin, ZANG Jia-zhong, XING Shu-jian. Research progress in selective alkylation of toluene and methanol[J]. Ind Catal, 2013,21(6):1-4.  

    8. [8]

      LI Zhao-qing. Study on catalyst for alkylation of toluene with methanol for preparing p-xylene and low-carbon olefin[D]. Beijing: China University of Petroleum, 2016. 

    9. [9]

      LI J H, TONG K, XI Z W, YUAN Y, HU Z H, ZHU Z R. Highly-efficient conversion of methanol to p-xylene over shape-selective Mg-Zn-Si-HZSM-5 catalyst with fine modification of pore-opening and acidic properties[J]. Catal Sci Technol, 2016,6:4802-4813.  

    10. [10]

      GUAN Wen-bin, XIN Yu-bin, WEI Li-hu, ZHANG Shi-gang. Research progress on para-xylene synthesis by aromatization of methanol[J]. Coal Chem Ind, 2019,47(2):11-15.  

    11. [11]

      ZHANG G Q, ZHANG X, BAI T, CHEN T F, FAN W T. Coking kinetics and influence of reaction-regeneration on acidity, activity and deactivation of Zn/HZSM-5 catalyst during methanol aromatization[J]. J Energy Chem, 2015,24(1):108-118.  

    12. [12]

      ZHANG Zhi-zhi, QIN Zhang-feng, WANG Guo-fu, WANG Jian-guo. Toluene disproportion over HZSM-5 under near critical coditions[J]. J Fuel Chem Technol, 2005,33(1):96-100.  

    13. [13]

      ONO Y. Transformation of lower alkanes into aromatic hydrocarbons over ZSM-5 zeolites[J]. Catal Rev:Sci Eng, 1992,34(3):179-226.  

    14. [14]

      ZAIDI H A, PANT K K. Catalytic conversion of methanol togasoline range hydrocarbons[J]. Catal Today, 2004,96(3):155-160.  

    15. [15]

      ZHANG J G, QIAN W Z, KONG C Y, WEI F. Increasing para-xylene selectivity in making aromatics from methanol with a surface-modified Zn/P/ZSM-5 catalyst[J]. ACS Catal, 2015,5(5):2982-2988.  

    16. [16]

      NI Y M, SUN A M, Wu X L, HAI G L, HU J L, LI T, LI G X. The preparation of nano-sized H[Zn, Al]ZSM-5 zeolite and its application in the aromatization of methanol[J]. Microporous Mesoporous Mater, 2011,143(2/3):435-442.  

    17. [17]

      ZHANG Zhi-ping, ZHAO Yan, WU Hong-yu, TAN Wei, WANG Xiang-sheng, GUO Xin-wen. Shape-selective alkylation of toluene with methanol over modified nano-scale HZSM-5 zeolite[J]. Chin J Catal, 2011,32(7):1280-1286.  

    18. [18]

      HU Q F, HUANG X F, CUI Y, LUO T F, TANG X P, WANG T, QIAN W Z, WEI F. High yield production of C2, 3 olefins and para-xylene from methanol using a SiO2-coated FeOx/ZSM-5 catalyst[J]. RSC Adv, 2017,7(46):28940-28944.  

    19. [19]

      MIYAKE K, HIROTA Y, ONO K, UCHIDA Y, TANAKA S, NISHIYAMA N. Direct and selective conversion of methanol to para-xylene over Zn ion doped ZSM-5/silicalite-1 core-shell zeolite catalyst[J]. J Catal, 2016,342:63-66.  

    20. [20]

      PAN D H, SONG X H, YANG X H, GAO L J, WEI R P, ZHANG J, XIAO G M. Efficient and selective conversion of methanol to para-xylene over stable H[Zn, Al]ZSM-5/SiO2 composite catalyst[J]. Appl Catal A:Gen, 2018,557:15-24.  

    21. [21]

      LIANG T Y, CHEN J L, QIN Z F, LI J F, WANG P F, WANG S, WANG G F, DONG M, FAN W B, WANG J G. Conversion of methanol to olefins over HZSM5 zeolite:Reaction pathway is related to the framework aluminum siting[J]. ACS Catal, 2016,6(11):7311-7325.  

    22. [22]

      ZHONG Bing, LUO Qing-yun, XIAO You-xie, ZHANG Wei. Reaction mechanism of methanol to hydrocarbons on HZSM-5[J]. J Fuel Chem Technol, 1986,14(1):9-16.

    23. [23]

      WANG Jin-ye, WANG Ding-zhu, LU Xue-dong, DOU Xiu-yun. Conversion of lower alcohols into aromatics over cation-modified HZSM-5 zeolites[J]. Chin J Catal, 1993,14(3):324-327.  

    24. [24]

      CAO Jin-song, ZHANG Jun-min, XU Lei, LIU Zhong-min. Superiorities for developing PX production process through alkylation of toluene alcohol[J]. Technol Econ Petrochem, 2010,26(1):8-10.  

    25. [25]

      ZHONG J W, HAN J F, WEI Y X, XU S T, SUN T T, GUO X W, SONG C S, LIU Z M. The template-assisted zinc ion incorporation in SAPO-34 and the enhanced ethylene selectivity in MTO reaction[J]. J Energy Chem, 2019,32:174-181.  

    26. [26]

      ZHONG J W, HAN J F, WEI Y X, XU S T, SUN T T, GUO X W, SONG C S, LIU Z M. Enhancing ethylene selectivity in MTO reaction by incorporating metal species in the cavity of SAPO-34 catalysts[J]. Chin J Catal, 2019,39(11):1821-1831.  

    27. [27]

      REN S, LIU G, WU X. Enhanced MTO performance over acid treated hierarchical SAPO-34[J]. Chin J Catal, 2017,38:123-130.  

    28. [28]

      LI L B, LIN R B, KRISHNA R, LI H, XIANG S C, WU H, LI J P, ZHOU W, CHEN B L. Ethane/ethylne separation in a metal-organic framework with iron-peroxo sites[J]. Sci, 2018,362(6413):443-446.  

    29. [29]

      JIA Y M, WANG J W, ZHANG K, WEI F, LIU S B, DING C M, LIU P. Promoted effect of zinc-nickel bimetallic oxides supported on HZSM-5 catalysts in aromatization of methanol[J]. J Energy Chem, 2017,26(3):540-548.  

    30. [30]

      WANG Yu, ZHAO Bi-ying, XIE You-chang. Correlations between the dispersion state of MgO and catalytic behavior of MgO/HZSM-5[J]. Acta Phys-Chim Sin, 2001,17(11):966-971.  

    31. [31]

      HAN Li-hua, LIU Ping, GAO Jun-hua, ZHOU Hao, SUN Xiao-fang, LIU Zeng-hou, ZHANG Kan. Si, P and Mg-modified HZSM-5 catalyst for enhancing the para-selectivity in toluene/methanol alkylation[J]. Nat Gas Ind, 2019,44(3):1-6.  

    32. [32]

      JANG H G, MIN H K, HONG S B, SEO J. Tetramethylbenzenium radical cations as major active intermediates of methanol-to-olefin conversions over phosphorous-modified HZSM-5 zeolites[J]. J Catal, 2013,299:240-248.  

    33. [33]

      WANG Sen, CHEN Yan-yan, WEI Zhi-hong, QIN Zhang-feng, LI Jun-fen, DONG Mei, FAN Wei-bin, WANG Jian-guo. Recent research progresses in the effect of framework structure and acidity of zeolites on their catalytic performance in methanol to olefins (MTO)[J]. J Fuel Chem Technol, 2015,43(10):1201-1214.  

    34. [34]

      BARTHOS R, LONYI F, ONYESTYAK G, VALYON J. An IR, FR, and TPD Study on the acidity of H-ZSM-5, sulfated zirconia, and sulfated zirconia-titania using ammonia as the probe molecule[J]. J Phys Chem B, 2000,104(31):7311-7319.  

    35. [35]

      KATADA N, IGI H, KIM J H, NIWA M. Determination of the acidic properties of zeolite by theoretical analysis of temperature-programmed desorption of ammonia based on adsorption equilibrium[J]. J Phys Chem B, 1997,101(31):5969-5977.  

    36. [36]

      TAN W, LIU M, ZHAO Y, HOU K K, WU H Y, ZHANG A F, LIU H O, WANG Y R, SONG C S, GUO X W. Para-selective methylation of toluene with methanol over nano-sized ZSM-5 catalysts:Synergistic effects of surface modifications with SiO2, P2O5 and MgO[J]. Microporous Mesoporous Mater, 2014,196(15):18-30.

    37. [37]

      WOOLERY G L, KUEHL G H, TIMKEN H C, CHESWER A W, VARTULI J C. On the nature of framework Brønsted and Lewis acid sites in ZSM-5[J]. Zeolites, 1997,19(4):288-296.

    38. [38]

      TOPSOE N Y, PEDERSEN K, DEROUANE E G. Infrared and temperature-programmed desorption study of the acidic properties of ZSM-5-type zeolites[J]. J Catal, 1981,70(1):41-52.  

    39. [39]

      TONG Kai, LI Jun-hui, XI Zhi-wen, ZHU Zhi-rong. Study of methanol shape-selective aromatization over ZnO/SiO2/ZSM-5 modified with mental oxide and silicon deposition[J]. J Fuel Chem Technol, 2015,43(2):221-227.  

    40. [40]

      LIU Wei-qiao, LEI Wei-ning, SHANG Tong-ming. Physicochemical and methanol aromatization property of HZSM-5 catalyst promoted by Zn[J]. Chem Ind Eng Prog, 2011,30(9):1967-1971.  

    41. [41]

      ZHAO Huan-yu, LIU Yun-qi, LIU Ping, ZHANG Xiu-bin, LIU Chen-guang. Effects of ZSM-5 zeolite catalysts modification conditions by liquid Si deposition on toluene disproportionation reaction[J]. J China University of Petroleum(Nat Sci Edi), 2006,30(6):117-120.  

    42. [42]

      ZHU X L, ZHANG J Y, CHENG M, WANG G W, YU M X, LI C Y. Methanol aromatization over Mg-P-modified[Zn, Al]ZSM-5 zeolites for efficient coproduction of para-xylene and light olefins[J]. Ind Eng Chem Res, 2019,58(42):19446-19455.  

    43. [43]

      ZHANG Xiu-bin, LI Qi-feng, LIU Yu-qi, LIU Chen-guang. Toluene disproportionation over ZSM-5 zeolite modified by phosphorus and magnesium[J]. Ind Catal, 2004,12(2):40-45.  

    44. [44]

      LI Y, JUN H. Kinetics study of the isomerization of xylene on ZSM-5 zeolites:the effect of the modification with MgO and CaO[J]. Appl Catal A:Gen, 1996,142(1):123-137.  

    45. [45]

      NIU X J, GAO J, MIAO Q, DONG M, WANG G F, FAN W B, QIN Z F, WANG J G. Influence of preparation method on the performance of Zn-containing HZSM-5 catalysts in methanol-to-aromatics[J]. Microporous Mesoporous Mater, 2014,197:252-261.  

    46. [46]

      CHANG C D, LANG W H, SMITH R L. The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts[J]. J Catal, 1979,56(2):169-173.  

    47. [47]

      LI Ling-ling, NIE Xiao-wa, SONG Chun-shan, GUO Xin-wen. Isomerization mechanism of xylene catalyzed by H-ZSM-5 molecular sieve[J]. Acta Phys-Chim Sin, 2013,29(4):754-762.  

    48. [48]

      VALECILLOS J, EPELDE E, ALBO J, AGUAYO A T, BILBAO J, CASTANO P. Slowing down the deactivation of H-ZSM-5 zeolite catalyst in the methanol-to-olefin (MTO) reaction by P or Zn modifications[J]. Catal Today, 2019.  

    49. [49]

      KAEDING W W, CHU C, YOUNG L B, WEINSTEIN B, BUTTER S A. Selective alkylation of toluene with methanol to produce para-xylene[J]. J Catal, 1981,67(1):159-174.  

    50. [50]

      YASHIMA T, SAKAGUCHI Y, NAMBA S. Selective formation of p-xylene by alkylation of toluene with methanol on ZSM-5 type zeolites[J]. Stud Surf Sci Catal, 1981,7(Part A):739-751.  

    51. [51]

      ZHU Jie, CUI Yu, CHEN Yuan-jun, ZHOU Hua-qun, WANG Yao, WEI Fei. Recent researches on process from methanol to olefins[J]. J Chem Ind Eng, 2010,61(7):1674-1684.  

    52. [52]

      PAN Hong-yan, TIAN Min, HE Zhi-jie, HUA Kai-hui, LIN Qian. Advances in research on modified ZSM-5 molecular sieves for conversion of methanol to olefins[J]. Chem Ind Eng Prog, 2014,33(10):2625-2633.

    53. [53]

      TENG H, WANG J, REN X Q, CHEN D M. Disproportionation of toluene by modified ZSM-5 zeolite catalysts with high shape-selectivity prepared using chemical liquid deposition with tetraethyl orthosilicate[J]. Chin J Chem Eng, 2011,19(2):292-298.  

  • 加载中
    1. [1]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    2. [2]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    3. [3]

      Shanyuan BiJin ZhangDengchao PengDanhong ChengJianping ZhangLupeng HanDengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295

    4. [4]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    5. [5]

      Wenke ZHENGCe LIUWei CHENHongshan KEFanlong ZENGYibo LEIAnyang LIWenyuan WANG . Synthesis and bonding analysis of low-coordinate Fe and Cr complexes with ultra-bulky silylamino groups. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1285-1293. doi: 10.11862/CJIC.20250095

    6. [6]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    7. [7]

      Haiyu ZhuZhuoqun WenWen XiongXingzhan WeiZhi Wang . Accurate and efficient prediction of Schottky barrier heights in 2D semimetal/silicon heterojunctions. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-0. doi: 10.1016/j.actphy.2025.100078

    8. [8]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    9. [9]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    10. [10]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    11. [11]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    12. [12]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    13. [13]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    14. [14]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    15. [15]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    16. [16]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    17. [17]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    18. [18]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    19. [19]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    20. [20]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

Metrics
  • PDF Downloads(9)
  • Abstract views(1062)
  • HTML views(110)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return