-
[1]
SCHUBERT M M, HACKENBERG S, VEEN A C V, MUHLER M, PLZAK V, BEHM R J. CO oxidation over supported gold catalysts-"Inert" and "active" support materials and their role for the oxygen supply during reaction[J]. J Catal,
2001,197(1):113-122.
doi: 10.1006/jcat.2000.3069
-
[2]
EINAGA H, NASU Y, ODA M, SAITO H. Catalytic performances of perovskite oxides for CO oxidation under microwave irradiation[J]. Chem Eng J,
2016,283:97-104.
doi: 10.1016/j.cej.2015.07.051
-
[3]
NURIA L, NØRSKOV J K. Catalytic CO oxidation by a gold nanoparticle:A density functional study[J]. J Am Chem Soc,
2002,124(38):11262-11263.
doi: 10.1021/ja026998a
-
[4]
IMBIHL R, COX M P, ERTL G, MÜLLER H, BRENIG W. Kinetic oscillations in the catalytic CO oxidation on Pt(100):Theory[J]. J Chem Phys,
1987,87(1):742-749.
doi: 10.1001/jama.297.21.2381
-
[5]
CAIXIA X, JIXIN S, XIAOHONG X, PENGPENG L, HONGJUAN Z, FANG T, YI D. Low temperature CO oxidation over unsupported nanoporous gold[J]. J Am Chem Soc,
2007,129(1):42-43.
doi: 10.1021/ja0675503
-
[6]
KUNG H H, KUNG M C, COSTELLO C K. Supported Au catalysts for low temperature CO oxidation[J]. J Catal,
2003,216(1/2):425-432.
-
[7]
BOTAO Q, AIQIN W, XIAOFENG Y, ALLARD L F, ZHENG J, YITAO C, JINGYUE L, JUN L, TAO Z. Single-atom catalysis of CO oxidation using Pt1/FeOx[J]. Nat Chem,
2011,3(8):634-641.
doi: 10.1038/nchem.1095
-
[8]
HENDRIKSEN B L M, FRENKEN J W M. CO oxidation on Pt(110):Scanning tunneling microscopy inside a high-pressure flow reactor[J]. Phys Rev Lett,
2002,89(4)046101.
doi: 10.1103/PhysRevLett.89.046101
-
[9]
WANG C, LI B, LIN H, YUAN Y. Carbon nanotube-supported Pt-Co bimetallic catalysts for preferential oxidation of CO in a H2-rich stream with CO2 and H2O vapor[J]. J Power Sources,
2012,202:200-208.
doi: 10.1016/j.jpowsour.2011.11.044
-
[10]
XU H, FU Q, GUO X, BAO X. Architecture of Pt-Co bimetallic catalysts for catalytic CO oxidation[J]. ChemCatChem,
2012,4(10):1645-1652.
doi: 10.1002/cctc.201200255
-
[11]
SNYTNIKOV P V, YUSENKO K V, KORENEV S V, SHUBIN Y V, SOBYANIN V A. Co-Pt bimetallic catalysts for the selective oxidation of carbon monoxide in hydrogen-containing mixtures[J]. Kinet Catal,
2007,48(2):276-281.
doi: 10.1134/S0023158407020127
-
[12]
BERA P, GAYEN A, HEGDE M S, LALLA N P, ARENA F. Promoting effect of CeO2 in combustion synthesized Pt/CeO2 catalyst for CO oxidation[J]. J Phys Chem B,
2003,107(25):6122-6130.
doi: 10.1021/jp022132f
-
[13]
AVAKYAN L A, KOLPACHEVA N A, PARAMONOVA E V, SINGH J, HARTFELDER U, BOKHOVEN J A V, BUGAEV L A. Evolution of the atomic structure of ceria-supported platinum nanocatalysts:Formation of single layer platinum oxide and Pt-O-Ce and Pt-Ce linkages[J]. J Phys Chem C,
2016,120(49):28057-28066.
doi: 10.1021/acs.jpcc.6b09824
-
[14]
SURENDAR M, SAGAR T V, RAVEENDRA G, ASHWANI KUMAR M, LINGAIAH N, RAMA RAO K S, SAI PRASAD P S. Pt doped LaCoO3 perovskite:A precursor for a highly efficient catalyst for hydrogen production from glycerol[J]. Int J Hydrogen Energy,
2016,41(4):2285-2297.
doi: 10.1016/j.ijhydene.2015.12.075
-
[15]
ZHAO L, HAN T, WANG H, ZHANG L, LIU Y. Ni-Co alloy catalyst from LaNi1-xCoxO3 perovskite supported on zirconia for steam reforming of ethanol[J]. Appl Catal B:Environ,
2016,187:19-29.
doi: 10.1016/j.apcatb.2016.01.007
-
[16]
GONG D, LI S, GUO S, TANG H, WANG H, LIU Y. Lanthanum and cerium co-modified Ni/SiO2 catalyst for CO methanation from syngas[J]. Appl Surf Sci,
2018,434:351-364.
doi: 10.1016/j.apsusc.2017.10.179
-
[17]
SUN S, YANG L I, PANG G, FENG S. Surface properties of Mg doped LaCoO3 particles with large surface areas and their enhanced catalytic activity for CO oxidation[J]. Appl Catal A:Gen,
2011,401(1/2):199-203.
-
[18]
LI S, TANG H, GONG D, MA Z, LIU Y. Loading Ni/La2O3 on SiO2 for CO methanation from syngas[J]. Catal Today,
2017,297:298-307.
doi: 10.1016/j.cattod.2017.06.014
-
[19]
THOMMES M, KANEKO K, NEIMARK A V, OLIVIER J P, RODRIGUEZ-REINOSO F, ROUQUEROL J, SING K S W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure Appl Chem,
2015,87(9/10):1051-1069.
-
[20]
LEOFANTI G, PADOVAN M, TOZZOLA G, VENTURELLI B. Surface area and pore texture of catalysts[J]. Catal Today,
1998,41(1):207-219.
-
[21]
SONG Z, SHI X, NING H, LIU G, ZHONG H, YUAN L. Loading clusters composed of nanoparticles on ZrO2 support via a perovskite-type oxide of La0.95Ce0.05Co0.7Cu0.3O3 for ethanol synthesis from syngas and its structure variation with reaction time[J]. Appl Surf Sci,
2017,405:1-12.
doi: 10.1016/j.apsusc.2017.02.003
-
[22]
BENJARA M, REDDY M, KATTA L, THRIMURTHULU G. Novel nanocrystalline Ce1-xLaxO2-δ(x=0.2) solid solutions:Structural characteristics and catalytic performance[J]. Chem Mater,
2010,22(2):467-475.
doi: 10.1021/cm100735n
-
[23]
JOB N, PEREIRA M F R, LAMBERT S, CABIAC A, DELAHAY G, COLOMER J F, MARIEN J, FIGUEIREDO J L, PIRARD J P. Highly dispersed platinum catalysts prepared by impregnation of texture-tailored carbon xerogels[J]. J Catal,
2006,240(2):160-171.
doi: 10.1016/j.jcat.2006.03.016
-
[24]
JERMWONGRATANACHAI T, JACOBS G, MA W, SHAFER W D, GNANAMANI M K, PEI G, KITIYANAN B, DAVIS B H, KLETTLINGER J L S, YEN C H. Fischer-tropsch synthesis:Comparisons between Pt and Ag promoted Co/Al2O3 catalysts for reducibility, local atomic structure, catalytic activity, and oxidation-reduction (OR) cycles[J]. Appl Catal A:Gen,
2013,464(6):165-180.
-
[25]
FANG C, ZHONG H, WEI Y, WANG J, ZHANG S, ZHANG L, LIU Y. Highly dispersed Pt species with excellent stability and catalytic performance by reducing a perovskite-type oxide precursor for CO oxidation[J]. Trans Tianjin Univ,
2018,24(6):547-554.
doi: 10.1007/s12209-018-0175-1
-
[26]
GONG D D, LI S S, GUO S X, TANG H G, WANG H, LIU Y. Lanthanum and cerium co-modified Ni/SiO2 catalyst for CO methanation from syngas[J]. Appl Surf Sci,
2018,434:351-364.
doi: 10.1016/j.apsusc.2017.10.179
-
[27]
WANG T, XING J Y, ZHU L, JIA A P, WANG Y J, LU J Q, LUO M F. CO oxidation over supported Pt/CrxFe2-xO3 catalysts and their good tolerance to CO2 and H2O[J]. Appl Catal B:Environ,
2019,245:314-324.
doi: 10.1016/j.apcatb.2018.12.054
-
[28]
DENG Y, WANG T, ZHU L, JIA A P, LU J Q, LUO M F. Enhanced performance of CO oxidation over Pt/CuCrOx catalyst in the presence of CO2 and H2O[J]. Appl Surf Sci,
2018,442:613-621.
doi: 10.1016/j.apsusc.2018.02.099
-
[29]
WANG H F, KAVANAGH R, GUO Y L, GUO Y, LU G Z, HU P. Structural origin:Water deactivates metal oxides to CO oxidation and promotes low-temperature CO oxidation with metals[J]. Angew Chem Int Ed,
2012,51(27):6657-6661.
doi: 10.1002/anie.201108981
-
[30]
JIN Y, SUN G, XIONG F, DING L, HUANG W. Water-activated lattice oxygen in FeO(111) islands for low-temperature oxidation of CO at Pt-FeO interface[J]. J Phys Chem C,
2016,120(18):9845-9851.
doi: 10.1021/acs.jpcc.6b02256
-
[31]
SINGHANIA A, GUPTA S M. Nanocrystalline ZrO2 and Pt-doped ZrO2 catalysts for low-temperature CO oxidation[J]. Beilstein J Nanotechnol,
2017,8(1):264-271.
doi: 10.3762/bjnano.8.29
-
[32]
AVGOUROPOULOS G, IOANNIDES T, PAPADOPOULOU C, BATISTA J, HOCEVAR S, MATRALIS H K. A comparative study of Pt/γ-Al2O3, Au/α-Fe2O3 and CuO-CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen[J]. Catal Today,
2002,75(1/4):157-167.
doi: 10.1016/S0920-5861(02)00058-5
-
[33]
LI S, LIU G, LIAN H, JIA M, ZHAO G, JIANG D, ZHANG W. Low-temperature CO oxidation over supported Pt catalysts prepared by colloid-deposition method[J]. Catal Commun,
2008,9(6):1045-1049.
doi: 10.1016/j.catcom.2007.10.016
-
[34]
EPLING W S, CHEEKATAMARLA P K, LANE A M. Reaction and surface characterization studies of titania-supported Co, Pt and Co/Pt catalysts for the selective oxidation of CO in H2 -containing streams[J]. Chem Eng J,
2003,93(1):61-68.
doi: 10.1016/S1385-8947(02)00109-2
-
[35]
ROH H S, POTDAR H S, JUN K W, HAN S Y, KIM J W. Low temperature selective CO oxidation in excess of H2 over Pt/Ce-ZrO2 catalysts[J]. Catal Lett,
2004,93(3):203-207.
doi: 10.1023/b:catl.0000017077.38760.1f
-
[36]
XU H, FU Q, YAO Y, BAO X. Highly active Pt-Fe bicomponent catalysts for CO oxidation in the presence and absence of H2[J]. Energy Environ Sci,
2012,5(4):6313-6320.
doi: 10.1039/C1EE02393D