Citation: DONG Jing-lan, GENG Xiao, GAO Zheng-yang, LIU Yan-feng. Adsorption mechanism of trace As on the defect sites of SiO2 in fly ash[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(11): 1401-1408. shu

Adsorption mechanism of trace As on the defect sites of SiO2 in fly ash

  • Corresponding author: DONG Jing-lan, jinglan_dong@163.com
  • Received Date: 15 May 2018
    Revised Date: 15 August 2018

    Fund Project: the Fundamental Research Funds for the Central Universities 2018MS099The project was supported by the Fundamental Research Funds for the Central Universities(2018MS099)

Figures(5)

  • To understand the enrichment characteristics of trace As in fly ash, the adsorption mechanism of AsO, a typical arsenic oxide, in SiO2, the main component of fly ash, was investigated by using density functional theory; energy calculation, AIM theory, Mulliken charge analysis and Localized Orbital Locator(LOL) color map were performed on the optimized adsorption configuration, in order to analyze the interaction between AsO and SiO2. The results show that the adsorption energy of AsO on the defect sites of amorphous SiO2 is higher than 50 kJ/mol, typical for the configuration of chemical adsorption. The bonds of As-Si, Si-O and As-O formed at the active defect sites of the amorphous SiO2 have high strength, belonging to the covalent bond; that is, the interaction between SiO2 and AsO is covalent.
  • 加载中
    1. [1]

      ZHAO Yong-chun, MA Si-ming, YANG Jian-ping. Development and status quo of ultra-clean pollutant emissions from coal-fired power plants[J]. J China Coal Soc, 2015,40(11):2629-2640.  

    2. [2]

      GUO Xin, ZHENG Chu-guang, CHEN Dan. Experimental Study on arsenic emission characteristics of 300MW pulverized coal-fired boiler[J]. J Environ Sci-China, 2006,27(4):631-634.  

    3. [3]

      WANG Quan-hai, QIU Jian-rong, WUN Cun. Experimental and simulation study on morphological transformation of trace elements under oxygen combustion[J]. J Eng Thermophys, 2006,27(s2):199-202.  

    4. [4]

      DING Z H, ZHENG B S, ZHUANG M. Mode of occurrence of arsenic in high-As coals from endemic arsenicosis areas in southwestern Guizhou Province, China[J]. J Coal Sci Eng, 2007,13(2):194-198.  

    5. [5]

      DONG Jing-lan, MA Kai. Study on arsenic release from coal-biomass combustion under oxygen-enriched atmosphere[J]. Chin J Power Eng, 2017,37(3):237-241.  

    6. [6]

      GAO Zheng-yang, LÜ Shao-kun, JI Shuo. Mechanism of lead adsorption on carbon-based surfaces[J]. J Chin Environ Eng, 2016,10(7):3848-3852.  

    7. [7]

      GAO Zheng-yang, LÜ Shao-kun. Mechanism of adsorption of mercury by manganese dioxide modified activated carbon[J]. Chin J Power Eng, 2015,35(11):923-928. doi: 10.3969/j.issn.1674-7607.2015.11.010

    8. [8]

      GUO Xin, ZHENG Chu-guang, LÜ Nai-xia. Density functional theory study of adsorption of mercury and mercury over the CaO(001) Surface of cluster model[J]. Proc CSEE, 2005,25(13):101-104. doi: 10.3321/j.issn:0258-8013.2005.13.019

    9. [9]

      WANG Peng, WU Jiang, REN Jian-xing. Experimental study on the effect of unburned carbon from fly ash on mercury adsorption in flue gas[J]. Chin J Power Eng, 2012,32(4):332-337. doi: 10.3969/j.issn.1674-7607.2012.04.012

    10. [10]

      WANG Jun, JIANG Jian-guo, SUI Ji-chao. Study on the basic properties of waste incineration fly ash[J]. J Environ Sci-China, 2006,27(11):141-145.  

    11. [11]

      SUN Jun-min, HAN De-xin, YAO Qiang. Microscopic particle types and microstructure characteristics of coal-fired fly ash[J]. J Electron Micro, 2001,20(2):140-147. doi: 10.3969/j.issn.1000-6281.2001.02.012

    12. [12]

      WILLIAMS R P, RIESSEN A V. Determination of the reactive component of fly ashes for geopolymer production using XRF and XRD[J]. Fuel, 2010,89(12):3683-3692. doi: 10.1016/j.fuel.2010.07.031

    13. [13]

      NURIA L, FRANCESC I, GIANFRANCO P. Adsorption of Cu, Pd, and Cs Atoms on Regular and Defect Sites of the SiO2 Surface[J]. J Am Chem Soc, 2017,121(4):813-821.  

    14. [14]

      FERULLO R M, GARDA G R, BELELLI P G. Deposition of small Cu, Ag and Au particles on reduced SiO2[J]. J Mol Struct (Theochem), 2006(769):217-223.  

    15. [15]

      LÜ Xin. Cluster-Surface Analogy: Discussion on Metal Oxide Cluster Model[D]. Xiamen: Xiamen University, 2004.

    16. [16]

      MUKHOPADHYAY S, SUSHKO P V. Correlation between the atomic structure, formation energies, and optical absorption of neutral oxygen vacancies in amorphous silica[J]. Phys Rev B, 2005,71(23)5204.  

    17. [17]

      KRISHNAN R, BINKLEY J S, SEEGER R. Self-consistent molecular-orbital methods-A basis set for correlated wave functions[J]. Chem Phys, 1980,72(1):650-654.  

    18. [18]

      WEIGEND F, AHLRICHS R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn:Design and assessment of accuracy[J]. Phys Chem Chem Phys, 2005(7):3297-3305.  

    19. [19]

      GAUSSIAN 09, REVISIOND.01, FRISCH M J, TRUCKS G W, SCHLEGEL H B. Gaussian, Inc., Wallingford CT, 2016.

    20. [20]

      LU T. Multiwfn:A multifunctional wavefunction analyzer[J]. J Comput Chem, 2012,33(5):580-592. doi: 10.1002/jcc.v33.5

    21. [21]

      TANG T H, CUI Y P. A theoretical study of some X-H-π hydrogen-bonded complexes using the theory of atoms in molecules[J]. Can J Chem, 2011,74(6):1162-1170.  

    22. [22]

      BADER R F. A quantum theory of molecular structure and its applications[J]. Chem Rev, 1991,91(5):893-928. doi: 10.1021/cr00005a013

    23. [23]

      CREMER D, KRAKA E. Chemical bonds without bonding electron density-Does the difference electron density analysis suffice for a description of the chemical bond[J]. Angew Chem, 1984,23(23):627-628.  

    24. [24]

      ESPINOSA E, ALKORTA I, ELGUERO J. From weak to strong interactions:A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X-H F-Y systems[J]. J Chem Phys, 2002,117(12):5529-5542. doi: 10.1063/1.1501133

    25. [25]

      DONG Lan, JIANG Shu-bin, ZHENG Shen-sheng. Density functional theory for hydrogen molecule adsorption of Ben(n=1~6) clusters[J]. Atomic Energy Sci Technol, 2010,44(12):1414-1419.  

    26. [26]

      YE Tian-xu, XU Yong-qiang, ZHANG Yu-hui. Quantum chemistry study on hydrogenation desulfurization activity of Co/MoS2 catalyst[J]. J Chin Univ Pet(Nat Sci Ed), 2005,29(4):119-121. doi: 10.3321/j.issn:1000-5870.2005.04.028

    27. [27]

      JACOBSEN H J. Localized-orbital locator (LOL) profiles of transition-metal hydride a[J]. Can J Chem, 2009,87(7):965-973. doi: 10.1139/V09-060

  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    3. [3]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    4. [4]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    5. [5]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    6. [6]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    7. [7]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    8. [8]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    9. [9]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    10. [10]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    11. [11]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    12. [12]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    13. [13]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    14. [14]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    15. [15]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    16. [16]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    17. [17]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    18. [18]

      Guang-Xu DuanQueting ChenRui-Rui ShaoHui-Huang SunTong YuanDong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751

    19. [19]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    20. [20]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

Metrics
  • PDF Downloads(9)
  • Abstract views(1118)
  • HTML views(202)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return