Citation: HONG Kun, MA Feng-yun, ZHONG Mei, LIU Jing-mei, MO Wen-long. Analysis of asphaltene structure and its effects on the coking behavior in the process of hydrothermal cracking[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(3): 357-365. shu

Analysis of asphaltene structure and its effects on the coking behavior in the process of hydrothermal cracking

  • Corresponding author: MA Feng-yun, ma_fy@126.com
  • Received Date: 20 August 2015
    Revised Date: 21 October 2015

    Fund Project: National Natural Science Foundation of China 21276219

Figures(8)

  • C6-asphaltene and deasphalted oil were obtained by using the Ta-he atmosphere residue (THAR) as the feedstock and n-hexane as the solvent. The deasphalted oil was then mixed with C6-asphaltene to prepare the residue with different asphaltene contents for autoclave hydrothermal cracking experiments. The molecular structure parameters, functional groups, crystal structure and surface morphology of C6-asphaltene were systematically analyzed by elemental analysis, 1H -NMR and 13C-NMR, GPC molecular weight, FT-IR, XRD and SEM. The results show that the aromatics in C6-asphaltene exhibit a highly branched degree and the side chains consist of mainly methyl, ethyl and propyl groups; the aromaticity (fA) of C6-asphaltene reaches 0.57. The aromatic ring systems have the peri-and cata-condensed structures, with high condensation degree and large aromatic slice sheets. The influence of C6-asphaltene content on its hydrothermal cracking behavior was further investigated. The result illustrate that the conversion of the residue oil is gradually increased with the increase of the asphaltene content; however, when the asphaltene content exceeds 5.12%, the increment of conversion is at the cost of the rapid coke formation. In addition, the yield of light oil increases at first and then levels off with the increase of the content of aliphatic carbon (fC3) in long chains, whereas the carbon residue and aromaticity (fA) show a good linear relationship with the yield of coke.
  • 加载中
    1. [1]

      ZHANG Shou-zeng, YUE Shu-fan, SHEN Jia-zhen, QIAO Chun-qin. Composition studies of vacuum residues from DaQing, ShengLi and RenQiu crudes[J]. Pet Process Petrochem, 1982(1):24-33.  

    2. [2]

      ZHOU Xiao-long, CHEN Shao-zhou, CHANG Ke-yi. Seperation and structure analysis of vacuum residue composition[J]. J East China Univ Sci Technol, 1995,6(21):649-653.  

    3. [3]

      SONG An-tai. Coking characterization of TaHe residue and the countermeasures for coking processing[J]. Pet Refin Eng, 2004,34(7):6-9.  

    4. [4]

      SUN Yu-dong, YANG Chao-he, HAN Zhong-xiang. Influence of asphaltene content on yield and properties of hydrotreated residue[J]. J Fuel Chem Technol, 2012,40(5):545-549.  

    5. [5]

      YEN T F. The colloidal aspect of a macrostructure of petroleum asphalt[J]. Fuel Sci Technol Int, 1992,10(4/6):723-733.  

    6. [6]

      MURGICH J, RODRGUEZ J M, ARAY Y. Molecular recognization and molecular mechanics of micelles of some model asphaltenes and resin[J]. Energy Fuels, 1996,10:68-76. doi: 10.1021/ef950112p

    7. [7]

      RAVEY J C. Asphaltene macro structure by small angle neutron scattering[J]. Fuel, 1988,67(8):1560-1567.

    8. [8]

      LIU Y C, SHEU E Y. Fractal structure of asphaltene in toluene[J]. Fuel, 1988,67(8):1352-1356.

    9. [9]

      MARUSKA H P, RAO M L. The role of polar species in the aggregation of asphaltenes[J]. Fuel Sci Technol Int, 1987,5(2):119-168. doi: 10.1080/08843758708915850

    10. [10]

      KELLOMEFIKI A. Molar polarization and dipole moments of but8imens[J]. Fuel, 1991,70(9):1103-1104. doi: 10.1016/0016-2361(91)90267-E

    11. [11]

      LI Sheng-hua, LIU Chen-guang, QUE Guo-he, LIANG Wen-jie, ZHU Ya-jie. Occurrence of the second liquid phase in the thermal reaction systems of vacuum residua[J]. J Fuel Chem Technol, 1996,24(6):473-479.  

    12. [12]

      LI Sheng-hua, LIU Chen-guang, QUE Guo-he, LIANG Wen-jie, ZHU Ya-jie. Occurrence of the second liquid phases in the thermal reaction system of vacuum residua-Second liquid phase and its characterization[J]. J Fuel Chem Technol, 1997,25(1):1-6.  

    13. [13]

      LI Sheng-hua, LIU Chen-guang, QUE Guo-he, LIANG Wen-jie, ZHU Ya-jie. Formation mechanisms of seconf liquid phases in thermal reaction systems of vacuum residua[J]. J Fuel Chem Technol, 1998,26(5):423-430.  

    14. [14]

      LI Sheng-hua, LIU Chen-guang, QUE Guo-he, LIANG Wen-jie, ZHU Ya-jie. Relations between second liquid phases and coke in thermal reaction systems of vacuum residue[J]. J Fuel Chem Technol, 1998,26(1):1-6.  

    15. [15]

      CHEN Shi-feng, YANG Chao-he. Studies of initial coke formation on residual hydroconversion catalyst[J]. J Fuel Chem Technol, 2001,29(5):395-399.  

    16. [16]

      KOKAL L S, SAYYEGH G S. Asphaltenes: The cholesterol of petroleum[C]. Bahrain: Middle east oil show, SPE29787, 1995: 169-181.

    17. [17]

      GAWEL I, BOCIARSKA D, BISKU P. Effect of asphaltenes on hydroprocessing of heavy oils and residua[J]. Appl Catal A: Gen, 2005,295(1):89-94. doi: 10.1016/j.apcata.2005.08.001

    18. [18]

      SUN Yu-dong. Influence of residue composition on hydrotreating reaction performance and properties of catalyst[D]. Shanghai: East China University of Science and Technology, 2011.

    19. [19]

      SH/T 0509-92(1998). Test method for separation of asphalt into four fractions[S]. 1998.

    20. [20]

      LIANG Wen-jie. Heavy Oil Chemistry[M]. Beijing: Press of Petroleum University, 2000: 49-80.

    21. [21]

      SUN Y D, YANG C H, ZHAO H, SHAN H, SHEN B X. Influence of asphaltene on the residue hydrotreating reaction[J]. Energy Fuels, 2010,24:5008-5011. doi: 10.1021/ef1005385

    22. [22]

      WANG Qing, GE Jian-xin, JIA Chun-xia, XU Xiao-fei, LIU Hong-peng. Influence of restorting end temperature on chemical structure of oil-sand oil[J]. J Chem Ind Eng, 2012,64(11):4216-4222.  

    23. [23]

      SADYKOV B R, STARIKOV V P, SADYKOV R K, KALABIN G. Determination of the fractional composition of merchantable oil using quantitative 1H-NMR spectra[J]. Petrol Chem, 2012,52(1):22-27. doi: 10.1134/S0965544112010094

    24. [24]

      ZHANG An-gui, WANG Gang, BI Yan-tao, XU Chun-ming, GAO Jin-sen. Structural changes of the bitumen from inner Mongolia oil sand during thermal conversion[J]. Acta Pet Sin (Pet Process Sect), 2011,27(3):434-440.  

    25. [25]

      MEI Yuan-fei, ZHAO Xin, SUN Wan-fu, QIAO Ai-xin, TANG Jun. The spectra analysis of Ili coal tar[J]. J Shihezi Univ Nat Sci Ed, 2011,29(3):384-389.  

    26. [26]

      AYARAJ C, AMARJEET S S, GURPREET S K. Chemical structure of bitumen-derived asphaltenes by nuclear magnetic resonance spectroscopy and X-ray diffractometry[J]. Fuel, 1996,75(8):999-1008. doi: 10.1016/0016-2361(96)00023-3

    27. [27]

      MOHAMMAD N S, MOHAMMAD F A, JOHN S. Use of X-ray fiffraction in assessing the aging pattern of asphalt fractions[J]. Fuel, 2002,81:51-58. doi: 10.1016/S0016-2361(01)00116-8

    28. [28]

      WU Le-le, DENG Wen-an, LI Zhuan, ZHANG Ying-hong, WANG Xiao-jie. Properties of coal tar heavy fraction and its relevance to coking in hydrocracking[J]. J Fuel Chem Technol, 2014,42(8):938-944.  

    29. [29]

      SOBKOWIAK M, REISSER E, GIVEN P, PAINTER P. Determination of aromatic and aliphatic CH groups in coal by FT-IR, study of coal extracts[J]. Fuel, 1984,63:1245-1252. doi: 10.1016/0016-2361(84)90433-2

    30. [30]

      LIU Yong-jun. Microstructure characterization of asphaltenes from atmospheric residue before and after hydroprocessing[J]. J Fuel Chem Technol, 2012,40(9):1086-1091. doi: 10.1016/S1872-5813(12)60039-5 

    31. [31]

      YU Shuang-lin, SHAN Hong-hong, ZHANG Long-li, SUN Yu-dong, YANG Chao-he. Collodial stability of atmospheric residue hydrotreating production[J]. J China Pet Univ Nat Sci Ed, 2010,34(1):139-143.  

    32. [32]

      ZHANG Long-li, ZHANG Shi-jie, YANG Guo-hua, JIANG Yun, QUE Guo-he. Colloid stability of atmospheric residual oil during thermal reaction[J]. Acta Pet Sin (Pet Process Sect), 2003,19(2):82-87.  

  • 加载中
    1. [1]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    2. [2]

      Yuan Chun Yongmei Liu Fuping Tian Hong Yuan Shu'e Song Wanchun Zhu Yunchao Li Zhongyun Wu Xiaokui Wang Yunshan Bai Li Wang Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Colloidal and Surface Chemical Properties, Molecular Structure and Properties. University Chemistry, 2025, 40(5): 178-188. doi: 10.12461/PKU.DXHX202503053

    3. [3]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    4. [4]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    5. [5]

      Jiying Liu Zehua Li Wenjing Zhang Donghui Wei . Molecular Orbital and Nucleus-Independent Chemical Shift Calculations for C6H6 and B12H122-: A Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 186-192. doi: 10.12461/PKU.DXHX202406085

    6. [6]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    7. [7]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    8. [8]

      Qiang Wu Wenhua Hou . Teaching Classical Contents Newly: Taking Temperature–Entropy Diagram as an Example. University Chemistry, 2025, 40(4): 399-407. doi: 10.12461/PKU.DXHX202407102

    9. [9]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    10. [10]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    11. [11]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    12. [12]

      Jinpeng DuJunlin ChenYulong ShanTongliang ZhangYu SunZhongqi LiuXiaoyan ShiWenpo ShanYunbo YuHong He . Insight into the effects of C3H6 on fresh and hydrothermally aged Cu-SSZ-39 catalysts. Chinese Chemical Letters, 2025, 36(3): 110019-. doi: 10.1016/j.cclet.2024.110019

    13. [13]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    16. [16]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    17. [17]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    18. [18]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    19. [19]

      Liuchuang Zhao Wenbo Chen Leqian Hu . Discussion on Improvement of Teaching Contents about Common Evaluation Parameters in Analytical Chemistry. University Chemistry, 2024, 39(2): 379-391. doi: 10.3866/PKU.DXHX202308079

    20. [20]

      Qilin YUYifei XUPengjun ZHANGShuwei HAOChongqiang ZHUChunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418

Metrics
  • PDF Downloads(0)
  • Abstract views(912)
  • HTML views(142)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return