Citation: ZHANG Ping-an, YUAN Jing, YU Dun-xi, LUO Guang-qian, YAO Hong. Influence of different distributions of Ca-mineral in coal on trimodal particulate matter formation during combustion[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(3): 273-278. shu

Influence of different distributions of Ca-mineral in coal on trimodal particulate matter formation during combustion

  • Corresponding author: YAO Hong, hyao@mail.hust.edu.cn
  • Received Date: 15 October 2015
    Revised Date: 6 January 2016

    Fund Project: The project was supported by the Science and technology support program of Hubei Province 2014BCB040

Figures(10)

  • Calcium acetate was added into a bituminous coal through physically blending and impregnation to obtain the ble-Ca coal rich in excluded Ca-mineral and imp-Ca coal rich in included Ca-mineral, respectively. The raw coal, ble-Ca coal and imp-Ca coal were burned in a drop tube furnace at 1300℃. The generated particulate matters (PMs) were collected and analyzed to study the influence of different distributions of Ca-mineral in coal on trimodal PM formation during combustion. The results showed that for the three coals, PMs with the ultrafine mode, central mode and coarse mode were all in the size range of < 0.2μm, 0.2-2μm and >2μm, respectively. The included and excluded Ca-minerals can both promote the formation of ultrafine mode PM, and the excluded one had more significant effect. The included Ca-mineral can restrain, while the excluded one can promote the formation of central mode PM. The included Ca-mineral can promote the formation of coarse mode PM, while the excluded one did not have obvious effect.
  • 加载中
    1. [1]

      YAO Q, LI S Q, XU H W, ZHUO J K, SONG Q. Studies on formation and control of combustion particulate matter in China: A review[J]. Energy, 2009,34(9):1296-1309. doi: 10.1016/j.energy.2009.03.013

    2. [2]

      LINAK W P, MILLER C A, SEAMES W S, WENDT J O L, ISHINOMORI T, ENDO Y, MIYAMAE S. On trimodal particle size distributions in fly ash from pulverized-coal combustion[J]. Proc Combust Inst, 2002,29(1):441-447. doi: 10.1016/S1540-7489(02)80058-X

    3. [3]

      SEAMES W S. An initial study of the fine fragmentation fly ash particle mode generated during pulverized coal combustion[J]. Fuel Process Technol, 2003,81(2):109-125. doi: 10.1016/S0378-3820(03)00006-7

    4. [4]

      YU D X, XU M H, YAO H, SUI J C, LIU X W, YU Y, CAO Q. Use of elemental size distributions in identifying particle formation modes[J]. Proc Combust Inst, 2007,31(6):1921-1928.  

    5. [5]

      QUANN R J. Ash vaporization under simulated pulverized coal combustion conditions[D]. Cambridge: Massachusetts Institute of Technology, 1982.

    6. [6]

      YU D X, XU M H, YAO H, LIU X W, ZHOU K, LI L, WEN C. Mechanisms of the central mode particle formation during pulverized coal combustion[J]. Proc Combust Inst, 2009,32(1):2075-2082.  

    7. [7]

      KANG S G. Fundamental studies of mineral matter transformation during pulverized coal combustion: Residual ash formation[D]. Cambridge: Massachusetts Institute of Technology, 1991.

    8. [8]

      HELBLE J J. A model for the air emissions of trace metallic elements from coal combustors equipped with electrostatic precipitators[J]. Fuel Process Technol, 2000,63(2/3):125-147.  

    9. [9]

      XU Ming-hou, YU Dun-xi, LIU Xiao-wei. Formation and Emission of Particulate Matter During Coal Combustion[M]. Beijing: Science Press, 2009.

    10. [10]

      MCLENNAN A R, BRYANT G W, BAILEY C W, STANMORE B R, WALL T F. An experimental comparison of the ash formed from coals containing pyrite and siderite mineral in oxidizing and reducing conditions[J]. Energy Fuels, 2000,14(2):308-315. doi: 10.1021/ef990092h

    11. [11]

      YU Dun-xi, XU Ming-hou, YAO Hong, LIU Xiao-wei, ZHANG Lian, WANG Qun-ying, NINOMIYA Y. Study on coal mineral properties and their transformation behavior during combustion by CCSEM[J]. J Eng Thermophys, 2007,28(5):875-878.  

    12. [12]

      ZHAN Zhong-hua. Effect of mineral characteristics on particulate matter emission during pulverized coal combustion[D]. Wuhan: Huazhong University of Science and Technology, 2011.

    13. [13]

      WANG Q Y, ZHANG L A, SATO A, NINOMIYA Y, YAMASHITA T. Interactions among inherent minerals during coal combustion and their impacts on the emission of PM10. 1. Emission of micrometer-sized particles[J]. Energy Fuels, 2007,21(2):756-765. doi: 10.1021/ef0603075

    14. [14]

      SENIOR C L, FLAGAN R C. Synthetic chars for the study of ash vaporization[C]//Twentieth symposium (international) on combustion. The Combustion Institute, 1984: 921-929.

    15. [15]

      ARENILLAS A, PEVIDA C, RUBIERA F, PIS J J. Comparison between the reactivity of coal and synthetic coal models[J]. Fuel, 2003,82(3):2001-2006.  

    16. [16]

      MO Xin. Research on transformation of pyrite in coal under O2/CO2 combustion conditions[D]. Wuhan: Huazhong University of Science and Technology, 2013.

    17. [17]

      NINOMIYA Y, WANG Q Y, XU SY, TERAMAE T, AWAYA I. Evaluation of a Mg-based additive for particulate matter (PM2.5) reduction during pulverized coal combustion[J]. Energy Fuels, 2010,24(1):199-204. doi: 10.1021/ef900556s

    18. [18]

      ZHANG Hong, HU Guang-zhou, FAN Jia-xin, PU Wen-xiu, MO Yan-xue, HA Si, LI Ying. Study on the distribution of mineral in pulverized coals[J]. J Eng Thermophys, 2008,29(7):1231-1235.  

    19. [19]

      ZHANG P A, YU D X, LUO G Q, YAO H. Temperature effect on central mode particulate matter formation in combustion of coals with different mineral compositions[J]. Energy Fuels, 2015,29(8):5245-5252. doi: 10.1021/acs.energyfuels.5b00784

    20. [20]

      TERAMAE T, TAKARADA T. Fine ash formation during pulverized coal combustion[J]. Energy Fuels, 2009,23(3):2018-2024.  

    21. [21]

      YU D X, XU M H, YAO H, LIU X W, ZHOU K. A new method for identifying the modes of particulate matter from pulverized coal combustion[J]. Powder Technol, 2008,183(1):105-114. doi: 10.1016/j.powtec.2007.11.011

    22. [22]

      XIAO Hai-ping, ZHOU Jun-hu, LIU Jian-zhong. Laboratory study on the high-temperature capture of SO2 and NOx by calcium magnesium acetate[J]. Proc Chin Soc Electr Eng, 2007,27(35):23-27.  

    23. [23]

      LIU Hong-tao, HAN Kui-hua, LU Chun-mei, LI Hui. Experimental study on reburning/advanced reburning performance of limestone modified by wood vinegar for NO reduction under O2/CO2 atmosphere[J]. J Fuel Chem Technol, 2013,41(2):228-234. doi: 10.1016/S1872-5813(13)60015-8 

    24. [24]

      GAO X P, RAHIM M U, CHEN X X, WU H W. Significant contribution of organically-bound Mg, Ca and Fe to inorganic PM10 emission during the combustion of pulverized Victorian brown coal[J]. Fuel, 2014,117(1):825-832.  

    25. [25]

      QIU J R, LI F, ZHENG Y, ZHENG C G, ZHOU H C. The influences of mineral behaviour on blended coal ash fusion characteristics[J]. Fuel, 1999,78(8):963-969. doi: 10.1016/S0016-2361(99)00005-8

  • 加载中
    1. [1]

      Tiancheng Yang Yang Yang Chunhua Qu Rui Chu Yue Xia . Wandering through the Kingdom of Chinese Mineral Medicines. University Chemistry, 2024, 39(9): 94-101. doi: 10.12461/PKU.DXHX202403015

    2. [2]

      Jiangjuan Shao Xuan Li Jingdan Weng Xiaolei Chen Fei Xu Yulu Ma Nianguang Li Shizhong Zheng . Improvement in the Experimental Teaching Design of Physical and Chemical Identification and Quantification of Mineral Drugs. University Chemistry, 2024, 39(10): 137-142. doi: 10.3866/PKU.DXHX202312079

    3. [3]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    4. [4]

      Houzhen Xiao Mingyu Wang Yong Liu Bangsheng Lao Lingbin Lu Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011

    5. [5]

      Shuyong Zhang Yaxian Zhu Wenqing Zhang Yuzhi Wang Jing Lu . Ideological and Political Design of Combustion Heat Measurement Experiment: Determination of Heat Value of Agricultural and Forestry Wastes. University Chemistry, 2024, 39(2): 1-6. doi: 10.3866/PKU.DXHX202303026

    6. [6]

      Weigang Zhu Yun Tian Zhicheng Zhang Hongling Gao . Reform Exploration of Student Performance Assessment in Inorganic Chemistry Experimental Courses. University Chemistry, 2024, 39(10): 203-209. doi: 10.12461/PKU.DXHX202404114

    7. [7]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    8. [8]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    9. [9]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    10. [10]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    11. [11]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    12. [12]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    13. [13]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    14. [14]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    15. [15]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    16. [16]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    17. [17]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    18. [18]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    19. [19]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    20. [20]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

Metrics
  • PDF Downloads(0)
  • Abstract views(846)
  • HTML views(118)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return