Citation: ZHU Ya-ming, TANG Shuai, ZHAO Xue-fei, ZHAO Chun-lei, YUAN Ji, HU Chao-shuai, YAN Li-dong. Micro-structure and micro-strength of coke from co-carbonization of lean coal and thermal extract from low rank coal[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(9): 1036-1043. shu

Micro-structure and micro-strength of coke from co-carbonization of lean coal and thermal extract from low rank coal

  • Corresponding author: ZHAO Xue-fei, zhao_xuefei@sohu.com
  • Received Date: 22 May 2018
    Revised Date: 20 July 2018

    Fund Project: the National Nature Science Foundation of China U1361212the Youth Fund of University of Science and Technology Liaoning 2017QN06the Youth Fund of the Education Department of Liaoning Province 2017LNQN04The project was supported by the National Nature Science Foundation of China (U1361212), the Youth Fund of the Education Department of Liaoning Province (2017LNQN04) and the Youth Fund of University of Science and Technology Liaoning (2017QN06)

Figures(4)

  • Crucible cokes were obtained by co-carbonization of Zhongwei lean coal as main coking coal and thermal extract from Datong long-flame coal as additive. The degree of regularization on anisotropic structure (DRAS) of coke was obtained by quantitative calculation of optical tissue from polarized microscopy. The crystallite size (Lc), aromatic condensation (La) and degree of graphitization (g) have been quantitative calculated by combination of XRD and curve-fitted method. Furthermore, Raman spectrum and curve-fitted method have been used to obtain content of ideal graphite microcrystalline of coke. The quantitative analysis of optical micro-component on obtained cokes shows that addition of thermal extract from Datong long-flame coal has a significant influence on optical micro-component of coke. There is good consistency on DRAS and microcrystalline parameters, which is calculated by the method of polarized microscopy and XRD and Raman spectrum, respectively. Moreover, the micro-strength index of coke is highly correlated with its microstructure.
  • 加载中
    1. [1]

      SHUI H F, ZHENG M D, WANG Z C, LI X M. Effect of coal soluble constituents on caking properties of coal[J]. Fuel, 2007,186(10/11):1396-1401.

    2. [2]

      SHUI H F, ZHAO W J, SHAN C J, SHUI T, PAN C X, WANG Z C, LEI Z P, REN S B, KANG S G. Caking and coking properties of the thermal dissolution soluble fraction of a fat coal[J]. Fuel Process Technol, 2014,118(2):64-68.  

    3. [3]

      SHUI H F, ZHENG M D, WANG Z C, LI X M. Effect of coal soluble constituents on caking property of coal[J]. Fuel, 2007,86(10):1396-1401.  

    4. [4]

      KOSZOREK A, KRZESIŃSKA M, PUSZ S, PUSZ B, KWIECIŃSKA B. Relationship between the technical parameters of cokes produced from blends of three Polish coals of different coking ability[J]. Int J Coal Geol, 2009,77(2):363-371.  

    5. [5]

      SHUI H F, WU Y, WANG Z C, LEI Z P, LIN C H, REN S B, PAN C X, KANG S G. Hydrothermal treatment of a sub-bituminous coal and its use in coking blends[J]. Energy Fuels, 2013,27(1):138-144. doi: 10.1021/ef301539x

    6. [6]

      NORINAGA K, HAYASHI J I, KATO R, CHIBA T. Reduction in thermo plasticity of Illinois No. 6 coal by heat treatment in refluxing chlorobenzene[J]. Energy Fuels, 2000,14(2):511-512. doi: 10.1021/ef990137e

    7. [7]

      SHARMA A, TAKANOHASHI T, MORISHITA K, TAKARADA T, SAITO I. Low temperature catalytic steam gasification of hyper-coal to produce H2 and synthesis gas[J]. Fuel, 2008,87(4):491-497.

    8. [8]

      TAKANOHASHI T, SHISHIDO T, SAITO I. Effects of hyper coal addition on coke strength and thermoplasticity of coal blends[J]. Energy Fuels, 2008,22(3):1779-1783. doi: 10.1021/ef7007375

    9. [9]

      CHANG C M, WHANG T J, HUANG D S, WANG D, TSAI S T. Thermoplasticity and strength improvement of coking coal by addition of coal extracts[J]. Fuel, 2014,117(1):364-371.  

    10. [10]

      YOSHIDA T, LI T, TAKANOHASHI T, MATSUMURA A, SATO S, SAITO I. Effect of extraction condition on "hypercoal" production (2):effect of polar solvents under hot filtration[J]. Fuel Process Technol, 2004,86(1):61-72. doi: 10.1016/j.fuproc.2003.12.003

    11. [11]

      OKUYAMA N, KOMATSU N, SHIGEHISA T, KANEKO T, TSURUYA S. Hyper-coal process to produce the ash-free coal[J]. Fuel Process Technol, 2004,85(8):947-967.

    12. [12]

      KASHIMURA N, TAKANOHASHI T, MASAKI K, SHISHIDO T, SATO S, MATSUMURA A, SAITO I. Relationship between thermal extraction yield and oxygen-containing functional groups[J]. Energy Fuels, 2006,20(5):2088-2092. doi: 10.1021/ef060194p

    13. [13]

      NISHIBATA Y. Effect of hyper coal addition to coal on coke quality[J]. Proceedings icsti, 2006:640-643.  

    14. [14]

      BRASHAW W, MAMONE V. Structural characterization of graphitic cokes and product thereof[M]. Qxford:Qxford University Press, 1976.

    15. [15]

      MARSH H, CORNFORD C. Mesophase:The precursor to graphitizable carbon[M]. Qxford:Qxford University Press, 1976.

    16. [16]

      QIAN Shu-an, SONG Xiao-zhen, FAN Ren-li, LI Chun-feng. The microstructural characteristics of needle cokes-new concept on evaluation of needle coke properties[J]. J Fuel Chem Technol, 1981,9(2):105-122.  

    17. [17]

      WU Xiao-ying. Study of XRD on the crystallite structure characteristics of high temperature coke of coals[J]. J Xi'an Ming Inst, 1999,19(2):158-160. doi: 10.3969/j.issn.1672-9315.1999.02.015

    18. [18]

      ANDRIANI G F, WALSH N. Physical properties and textural parameters of calcarenitic rocks:Qualitative and quantitative evaluations[J]. Eng Geol, 2002,67(1):5-15.  

    19. [19]

      SMEDOWSKI Y, KRZESIN S M, KWAS N W, KOZANECKI M. Development of ordered structures in the high-temperature(HT) cokes from binary and ternary coal blends studied by meansof X-ray diffraction and raman spectroscopy 2011 American chemical society[J]. Energy Fuels, 2011,25(7):3142-3149. doi: 10.1021/ef200609t

    20. [20]

      FANG Yong-zheng, CAO Yin-ping, JIN Ming-lin, YANG Jun-he, QIAN Zhan-fen. Effect of anthracite in coal blend on micro-crystal and pore structure of coke[J]. Iron Steel, 2006,41(10):16-18.  

    21. [21]

      ZHANG Zhuo, XIE Feng, CHENG Huan, WANG Qi. Coke microcrystalline texture and its effect on coke reactivity[J]. J Fuel Chem Technol, 2018, 46(4):16-18.

    22. [22]

      ZHU Ya-ming, TANG Shuai, ZHAO Xue-fei, LAI Shi-quan, GAO Li-juan. Influence of pyrolytic extracts of long flame coal to the coking properties of individual coal[J]. Fuel Chem Process, 2016,47(1):1-3. doi: 10.3969/j.issn.1001-3709.2016.01.001

    23. [23]

      NOMURA S, KATO K, NAKAGAWA T, KOMAKI I. The effect of plastic addition on coal caking properties during carbonization[J]. Fuel, 2003,82:1775-1782. doi: 10.1016/S0016-2361(03)00120-0

    24. [24]

      SHUI H F, HE F, WU Y, PAN C X, WANG Z C, LEI Z P, REN S B, KANG S G. Study on the use of the thermal dissolution soluble fraction from shenfu sub-bituminous coal in coke-making coal blends[J]. Energy Fuels, 2015,29(13):1558-1563.

    25. [25]

      YAO Zhao-zhang, ZHENG Ming-dong. Coking Technology[M]. 3rd ed. Beijing:Metallurgical Industry Press, 2015.

    26. [26]

      MANOJ B, KUNJOMANA A G. Study of stacking structure of amorphous carbon by X-ray diffraction technique[J]. Int J Electrochem Sci, 2012,7(4):3127-3134.

    27. [27]

      MORGA R, JOLONEK I, KRUSZEWSKA K, SZULIK W. Relationships between quality of coals, resulting cokes, and micro-raman spectral characteristics of these cokes[J]. Int J Coal Geol, 2015,144(1)130.  

    28. [28]

      SADEZKY A, MUCKENHUBER H, GROTHE H, NIESSNER R, PÖSCHL U. Raman microspectroscopy of soot and related carbonaceous materials:Spectral analysis and structural information[J]. Carbon, 2005,43(8):1731-1742. doi: 10.1016/j.carbon.2005.02.018

    29. [29]

      MORGA R. Micro-raman spectroscopy of carbonized semifusinite and fusinite[J]. Int J Coal Geol, 2011,87(3):253-267.  

    30. [30]

      BEYSSAC O, GOFFÉ B, PETITET J P, IGNEUX E, MOREAU M, ROUZAUD J N. On the characterization of disordered and heterogeneous carbonaceous materials by raman spectroscopy[J]. Spectrochim Acta A, 2003,59(10):2267-2276. doi: 10.1016/S1386-1425(03)00070-2

    31. [31]

      ZHU Y M, ZHAO X F, GAO L J, CHENG J X, LV J, LAI S Q. Quantitative study of the microcrystal structure on coal based on needle coke with curve-fitted of XRD and Raman spectrum[J]. Spectrosc Spect Anal, 2017,37(6):1919-1924.  

    32. [32]

      ZHU Y M, ZHAO X F, GAO L J, LV J, CHENG J X, LAI S Q. Study on the pyrolysis characteristic and the microstructure of the pyrolysis products of β resins from different coal tar pitch[J]. J Chem Soc Pakistan, 2018,40(2):343-353.

  • 加载中
    1. [1]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    2. [2]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    3. [3]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    4. [4]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    6. [6]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

    7. [7]

      Liuchuang Zhao Wenbo Chen Leqian Hu . Discussion on Improvement of Teaching Contents about Common Evaluation Parameters in Analytical Chemistry. University Chemistry, 2024, 39(2): 379-391. doi: 10.3866/PKU.DXHX202308079

    8. [8]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    9. [9]

      Zhongbin Pan Shijie Huang Yunjie Luo Hongzhen Xie . Design of a Comprehensive Experiment for Determining Permanganate Index (CODMn) in Drinking Water. University Chemistry, 2024, 39(7): 354-360. doi: 10.12461/PKU.DXHX202311040

    10. [10]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    11. [11]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    12. [12]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    13. [13]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    14. [14]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    15. [15]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    16. [16]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    17. [17]

      Jingzhuo Tian Chaohong Guan Haobin Hu Enzhou Liu Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068

    18. [18]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    19. [19]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    20. [20]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

Metrics
  • PDF Downloads(6)
  • Abstract views(865)
  • HTML views(104)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return