Removal of elemental mercury (Hg0) from simulated flue gas over MnOx-TiO2 sorbents
- Corresponding author: LI Yang, yli@dlut.edu.cn
Citation:
LI Yang, LIU Bing, YANG He, YANG Da-wei, HU Hao-quan. Removal of elemental mercury (Hg0) from simulated flue gas over MnOx-TiO2 sorbents[J]. Journal of Fuel Chemistry and Technology,
;2020, 48(5): 513-524.
ZHENG Chu-guang, ZHANG Jun-ying, ZHAO Yong-chun, LIU Jing, GUO Xin. Emission and Control of Mercury from Coal Combustion[M]. Beijing:Science Press, 2010.
FENG Xin-bin, QIU Guang-le, FU Xue-wu, HE Tian-rong, LI Ping, WANG Shao-feng. Mercury pollution in the environment[J]. Prog Chem, 2009,21(2):436-457.
WU Y, WANG S X, STREETS D G, HAO J M, CHAN M, JIANG J K. Trends in anthropogenic mercury emissions in China from 1995 to 2003[J]. Environ Sci Technol, 2006,40(17):5312-5318. doi: 10.1021/es060406x
STREETS D G, HAO J M, WU Y, JIANG J K, CHAN M, TIAN H Z, FENG X B. Anthropogenic mercury emissions in China[J]. Atmos Environ, 2005,39(40):7789-7806. doi: 10.1016/j.atmosenv.2005.08.029
HU D, ZHANG W, CHEN L, CHEN C, OU L B, TONG Y D, WEI W, LONG W J, WANG X J. Mercury emissions from waste combustion in China from 2004 to 2010[J]. Atmos Environ, 2012,62:359-366. doi: 10.1016/j.atmosenv.2012.08.061
SENIOR C L, HRLBLE J J, SAROFIM A F. Emissions of mercury, trace elements, and fine particles from stationary combustion sources[J]. Fuel Process Technol, 2000,65/66:263-288. doi: 10.1016/S0378-3820(00)00082-5
GALBREATH K C, ZYGARLICKE C J. Mercury transformations in coal combustion flue gas[J]. Fuel Process Technol, 2000,65-66:289-310. doi: 10.1016/S0378-3820(99)00102-2
WANG Yun-jun, DUAN Yu-feng, YANG Li-guo, MENG Su-li, HUANG Zhi-jun, WU Cheng-jun, WANG Qian. Experimental study on mercury removal by combined wet flue gas desulphurization with electrostatic precipitator[J]. Proc CSEE, 2008,28(29):64-69. doi: 10.3321/j.issn:0258-8013.2008.29.012
HU Chang-xing, ZHOU Jin-song, LUO Zhong-yang, GAO Hong-liang, WANG Qin-hui, CEN Ke-fa. Factors affecting amount of activated carbon injection for flue gas mercury control[J]. J Chem Ind Eng (China), 2005,56(11):140-145.
SJOSTROM S, DURHAM M, BUSTARD C J, MARTIN C. Activated carbon injection for mercury control:Overview[J]. Fuel, 2010,89(6):1320-1322. doi: 10.1016/j.fuel.2009.11.016
DING F, ZHAO Y C, MI L L, LI H L, LI Y, ZHANG J Y. Removal of gas-phase elemental mercury in flue gas by inorganic chemically promoted natural mineral sorbents[J]. Ind Eng Chem Res, 2012,51(7):3039-3047. doi: 10.1021/ie202231r
REN Jian-li, ZHOU Jin-song, LUO Zhong-yang, HU Chang-xing, ZHONG Ying-jie. The application of novel sorbents for mercury vapor removal from simulated flue gases[J]. Proc CSEE, 2007,27(2):48-53. doi: 10.3321/j.issn:0258-8013.2007.02.010
SHAO H Z, LIU X W, ZHOU Z J, ZHAO B, CHEN Z G, XU M H. Elemental mercury removal using a novel KI modified bentonite supported by starch sorbent[J]. Chem Eng J, 2016,291:306-316. doi: 10.1016/j.cej.2016.01.090
SHI Dong-lei, QIAO Ren-jing, XU Qi. Preparation of acid modified attapulgite and its performance of mercury removal[J]. Chin J Syn Chem, 2015,23(8):720-724.
ZHANG An-chao, XIANG Jun, SUN Lu-shi, HU Song, FU Peng, CHENG Wei, QIU Jian-rong. Synthesis and characterization of novel modified sorbents and their performance for elemental mercury removal[J]. CIESC J, 2009,60(6):1546-1553. doi: 10.3321/j.issn:0438-1157.2009.06.032
HE J, REDDY G K, THIEL S W, SMIRNIOTIS P G, PINTO N G. Ceria-modified manganese oxide/titania materials for removal of elemental and oxidized mercury from flue gas[J]. J Phys Chem C, 2011,115(49):24300-24309. doi: 10.1021/jp208768p
ZHANG X P, CUI Y Z, TAN B J, WANG J X, LI Z F, HE G H. The adsorption and catalytic oxidation of the element mercury over cobalt modified Ce-ZrO2 catalyst[J]. RSC Adv, 2016,6(91):88332-88339. doi: 10.1039/C6RA19450H
DU W, YIN L B, ZHUO Y Q, XU Q S, ZHANG L, CHEN C H. Performance of CuOx-neutral Al2O3 sorbents on mercury removal from simulated coal combustion flue gas[J]. Fuel Process Technol, 2015,131:403-408. doi: 10.1016/j.fuproc.2014.11.039
WU Z B, JIANG B Q, LIU Y. Effect of transition metals addition on the catalyst of manganese/titania for low-temperature selective catalytic reduction of nitric oxide with ammonia[J]. App Catal B:Environ, 2008,79(4):347-355. doi: 10.1016/j.apcatb.2007.09.039
XIE Jiang-kun. Study of manganese-based binary-metal oxides and their capability for gaseous elemental mercury capture[D].Shanghai: Shanghai Jiao Tong University, 2013.
ZHANG S B, ZHAO Y C, WANG Z H, ZHANG J Y, WANG L L, ZHENG C G. Integrated removal of NO and mercury from coal combustion flue gas using manganese oxides supported on TiO2[J]. J Environ Sci, 2017,53:141-150. doi: 10.1016/j.jes.2015.10.038
LI H L, WU C Y, LI Y, ZHANG J Y. Superior activity of MnOx-CeO2/TiO2 catalyst for catalytic oxidation of elemental mercury at low flue gas temperatures[J]. App Catal B:Environ, 2012,111/112:381-388. doi: 10.1016/j.apcatb.2011.10.021
LIU Ying, GE Pei-wen, SU Shao-kui, ZHANG Li-juan, WANG Yun-ping. Thermal analysis and structure transformation of Mn12-Ac magnetic molecular crystals[J]. Acta Phys Sin, 2004,53(11):4015-4020.
LIAO Wei-ping, YANG Liu, WANG Fei, HU Yu-feng, SHENG Zhong-yi. Performance study for low-temperature SCR catalysts based on Mn-Ce prepared by different methods[J]. Acta Chim Sin, 2011,69(22):2723-2728.
LIU Na, HE Feng, XIE Jun-lin, HU Hua, LI Feng-xiang, FANG De. Catalytic performance of Fe-doped Mn/TiO2 catalysts for low-temperature denitration[J]. J Syn Crys, 2017,46(3):490-494. doi: 10.3969/j.issn.1000-985X.2017.03.019
XIE J K, YAN N Q, YANG S J, QU Z, CHEN W M, ZHANG W Q, LI K H, LIU P, JIA J P. Synthesis and characterization of nano-sized Mn-TiO2 catalysts and their application to removal of gaseous elemental mercury[J]. Res Chem Intermed, 2012,38(9):2511-2522. doi: 10.1007/s11164-012-0568-z
JENSEN H, SOLOVIEV A, LI Z S, SΦGAARD E G. XPS and FTIR investigation of the surface properties of different prepared titania nano-powders[J]. Appl Sur Sci, 2005,246(1):239-249.
ZHANG A C, XING W B, ZHANG Z H, MENG F M, LIU Z C, XIANG J, SUN L S. Promotional effect of SO2 on CeO2-TiO2 material for elemental mercury removal at low temperature[J]. Atmos Pollut Res, 2016,7(5):895-902. doi: 10.1016/j.apr.2016.05.003
OSEGHE E O, NDUNGU P G, JONNALAGADDA S B. Synthesis of mesoporous Mn/TiO2 nanocomposites and investigating the photocatalytic properties in aqueous systems[J]. Environ Sci Pollut Res Inter, 2014,22(1)211.
ZHU Shao-wen, SHEN Bo-xiong, CHI Gui-long, ZHANG Xiao. Low-temperature SCR of NO over Fe and Co co-doped Mn-Ce/TiO2 catalyst[J]. Chin J Environ Eng, 2017,11(6):3633-3639.
ZHANG X, SHEN B X, SHEN F, ZHANG X Q, SI M, YUAN P. The behavior of the manganese-cerium loaded metal-organic framework in elemental mercury and NO removal from flue gas[J]. Chem Eng J, 2017,326:551-560. doi: 10.1016/j.cej.2017.05.128
ZHOU Q, LEI Y, LIU Y B, TAO X, LU P, DUAN Y F, WANG Y J. Gaseous elemental mercury removal by magnetic Fe-Mn-Ce sorbent in simulated flue gas[J]. Energy Fuels, 2018,32(12):12780-12786. doi: 10.1021/acs.energyfuels.8b03445
KANG M, PARK E D, KIM J M, YIE J E. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures[J]. Appl Catal A:Gen, 2007,327(2):261-269. doi: 10.1016/j.apcata.2007.05.024
LI Hai-long. Catalytic oxidation of elemental mercury over novel SCR catalysts[D]. Wuhan: Huazhong University of Science and Technology, 2011.
YANG S J, QI F H, XIONG S C, DANG H, LIAO Y, WONG P K, LI J H. MnOx supported on Fe-Ti spinel:A novel Mn based low temperature SCR catalyst with a high N2 selectivity[J]. Appl Catal B:Environ, 2016,181:570-580. doi: 10.1016/j.apcatb.2015.08.023
YANG S J, GUO Y F, YAN N Q, QU Z, XIE J K, YANG C, JIA J P. Capture of gaseous elemental mercury from flue gas using a magnetic and sulfur poisoning resistant sorbent Mn/γ-Fe2O3 at lower temperatures[J]. J Hazard Mater, 2011,186(1):508-515. doi: 10.1016/j.jhazmat.2010.11.034
LI H H, WANG Y, WANG S K, WANG X, HU J J. Removal of elemental mercury in flue gas at lower temperatures over Mn-Ce based materials prepared by co-precipitation[J]. Fuel, 2017,208:576-586. doi: 10.1016/j.fuel.2017.07.061
ZHOU Qi-qi, WANG Xue-qian, NING Ping, HUANG Hong-qi, TAO Lei. Adsorption performance of elemental mercury on MOFs modified with FeCl3 at low temperatures[J]. Res Environ Sci, 2018,31(3):528-536.
WANG Hong-yan, WANG Bao-dong, LI Jun-hua, SUN Qi. Progress in catalytic oxidation technology for element mercury in coal-fired flue gas[J]. Mater Rev, 2017,31(7):114-120.
LIU D J, ZHOU W G, WU J. Effect of Ce and La on the activity of CuO/ZSM-5 and MnOx/ZSM-5 composites for elemental mercury removal at low temperature[J]. Fuel, 2017,194:115-122. doi: 10.1016/j.fuel.2016.12.076
DESHETTI J, SAMUEL J I, YLIAS M S, BENJARAM M R, SURESH K B. Highly efficient nanosized Mn and Fe codoped ceria-based solid solutions for elemental mercury removal at low flue gas temperatures[J]. Catal Sci Technol, 2015,5(5):2913-2924. doi: 10.1039/C5CY00231A
QIAO S H, CHEN J, LI J F, QU Z, LIU P, YAN N Q, JIA J P. Adsorption and catalytic oxidation of gaseous elemental mercury in flue gas over MnOx/Alumina[J]. Ind Eng Chem Res, 2009,48(7):3317-3322. doi: 10.1021/ie801478w
ZHANG S B, ZHAO Y C, YANG J P, ZHANG Y, SUN P, YU X H, ZHANG J Y, ZHENG C G. Simultaneous NO and mercury removal over MnOx/TiO2 catalyst in different atmospheres[J]. Fuel Process Technol, 2017,166:282-290. doi: 10.1016/j.fuproc.2017.06.011
TAO S S, LI C T, FAN X P, ZENG G M, LU P, ZHANG X, WEN Q B, ZHAO W W, LUO D Q, FAN C Z. Activated coke impregnated with cerium chloride used for elemental mercury removal from simulated flue gas[J]. Chem Eng J, 2012,210:547-556. doi: 10.1016/j.cej.2012.09.028
CHEN W M, PEI Y, HUANG W J, QU Z, HU X F, YAN N Q. Novel effective catalyst for elemental mercury removal from coal-fired flue gas and the mechanism investigation[J]. Environ Sci Technol, 2016,50(5):2564-2572. doi: 10.1021/acs.est.5b05564
ZHU Lei, LI Hai-long, ZHAO Yong-chun, ZHANG Jun-ying. Experimental study on Hg0 adsorption by nano-ZnS[J]. J Eng Thermo, 2017,38(1):203-207.
YUAN Yuan, ZHANG Jun-ying, ZHAO Yong-chun, WANG Yu-xiang, ZHENG Chu-guang. Effects of SO2 and NO on removal of elemental mercury using a TiO2-aluminum silicate fiber[J]. J Fuel Chem Technol, 2012,40(5):630-635. doi: 10.3969/j.issn.0253-2409.2012.05.020
KONG Fan-hai. Study on experimental and mechanism of mercury removal from flue gas with Fe based nano-sorbents[D].Wuhan: Huazhong University of Science and Technology, 2010.
WANG Jun-wei, ZHANG Qing-ping, SHEN Yuan-yuan, DONG Yan-jie, ZHANG Xian-long, QIN Wei, ZHANG Yuan-guang. Removal of vapor-phase Hg0 over a CuO/PG catalyst[J]. Environ Chem, 2017,36(5):1097-1103.
ZHAO L K, LI C T, ZHANG X N, ZENG G M, ZHANG J, XIE Y E. A review on oxidation of elemental mercury from coal-fired flue gas with selective catalytic reduction catalysts[J]. Catal Sci Technol, 2015,5(7):3459-3472. doi: 10.1039/C5CY00219B
LI H L, WU C Y, LI Y, LI L Q, ZHAO Y C, ZHANG J Y. Role of flue gas components in mercury oxidation over TiO2 supported MnOx-CeO2 mixed-oxide at low temperature[J]. J Hazard Mater, 2012,243:117-123. doi: 10.1016/j.jhazmat.2012.10.007
WU Y H, XU W Q, YANG Y, WANG J, ZHU T Y. Support effect of Mn-based catalysts for gaseous elemental mercury oxidation and adsorption[J]. Catal Sci Technol, 2018,8(1):236-297. doi: 10.1039/C7CY01351E
LOPEZ-ANTON M A, YUAN Y, PERRY R, MAROTO-VALER M M. Analysis of mercury species present during coal combustion by thermal desorption[J]. Fuel, 2010,89(3):629-634.
YANG Ying-ju, ZHANG Bao-hua, LIU Jing, WANG Zhen, MIAO Sen. Mercury removal by recyclable and regenerable CuxMn(3-x)O4 spinel-type sorbents[J]. J Combus Sci Technol, 2017,23(6):511-515.
EVAN J, GRANITE , PENNLINE H W, HARGIS R A. Novel sorbents for mercury removal from flue gas[J]. Ind Eng Chem Res, 2000,39:1020-1029. doi: 10.1021/ie990758v
Xiaoyao YIN , Wenhao ZHU , Puyao SHI , Zongsheng LI , Yichao WANG , Nengmin ZHU , Yang WANG , Weihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
Zhiqiang Wang , Yajie Gao , Tianjun Wang , Wei Chen , Zefeng Ren , Xueming Yang , Chuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602
Jiatong Li , Linlin Zhang , Peng Huang , Chengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970
Cailiang Yue , Nan Sun , Yixing Qiu , Linlin Zhu , Zhiling Du , Fuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698
Maosen Xu , Pengfei Zhu , Qinghong Cai , Meichun Bu , Chenghua Zhang , Hong Wu , Youzhou He , Min Fu , Siqi Li , Xingyan Liu . In-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524
Xinyue Han , Yunhan Yang , Jiayin Lu , Yuxiang Lin , Dongxue Zhang , Ling Lin , Liang Qiao . Efficient serum lipids profiling by TiO2-dopamin-assisted MALDI-TOF MS for breast cancer detection. Chinese Chemical Letters, 2025, 36(5): 110183-. doi: 10.1016/j.cclet.2024.110183
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Qianqian Zhong , Yucui Hao , Guotao Yu , Lijuan Zhao , Jingfu Wang , Jian Liu , Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
Linlu Bai , Wensen Li , Xiaoyu Chu , Haochun Yin , Yang Qu , Ekaterina Kozlova , Zhao-Di Yang , Liqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931
Lihua HUANG , Jian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315
Wenhao Wang , Guangpu Zhang , Qiufeng Wang , Fancang Meng , Hongbin Jia , Wei Jiang , Qingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193
Mengli Xu , Zhenmin Xu , Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305
Fei ZHOU , Xiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
Bo YANG , Gongxuan LÜ , Jiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063
Xingang Kong , Yabei Su , Cuijuan Xing , Weijie Cheng , Jianfeng Huang , Lifeng Zhang , Haibo Ouyang , Qi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428
Yifen He , Chao Qu , Na Ren , Dawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262
(a): N2 adsorption-desorption isotherm; (b): pore size distribution
(a): N2 adsorption-desorption isotherm; (b): pore size distribution
(a): Mn-Ti-450 with Mn loading value of 1-12; (b): 12Mn-Ti with calcination temperature of 400-500 ℃
(a): Mn 2p of fresh and spent sample; (b): O 1s of fresh and spent sample; (c): Ti 2p of fresh and spent sample; (d): Hg 4f of spent sample in BFG atmosphere; (e): Hg 4f of spent sample in (BFG+0.4‰ SO2); (f): S 2p of spent sample in (BFG+0.4‰ SO2)
(reaction temperature t=200 ℃, BFG)
(reaction temperature t=300 ℃, BFG)
(reaction temperature t=150-350 ℃, BFG)
(a): removal efficiency; (b): adsorption capacity
(reaction temperature t=300 ℃, 0-10% O2, 0-12% CO2, 0-0.4‰ SO2, 0-0.02‰ HCl, 0-0.4‰ NO, N2 as balance gas)
reaction condition: (a): BFG, 300 ℃; (b): BFG, 200/250/300 ℃; (c): BFG, BFG+0.2‰ SO2, BFG+0.2‰ NO, 300 ℃