MoO3-SnO2 catalyst prepared by hydrothermal synthesis method for dimethyl ether catalytic oxidation
- Corresponding author: ZHANG Qing-de, qdzhang@sxicc.ac.cn
Citation:
YANG Qi, GAO Xiu-juan, FENG Ru, LI Ming-jie, ZHANG Jun-feng, ZHANG Qing-de, HAN Yi-zhuo, TAN Yi-sheng. MoO3-SnO2 catalyst prepared by hydrothermal synthesis method for dimethyl ether catalytic oxidation[J]. Journal of Fuel Chemistry and Technology,
;2019, 47(8): 934-941.
SEMELSBERGER T A, BORUP R L, GREENE H L. Dimethyl ether(DME) as an alternative fuel[J]. J Power Sources, 2006,156(2):497-511. doi: 10.1016/j.jpowsour.2005.05.082
XU M T, LUNSFORD J H, GOODMAN D W, BHATTACHARYYA A. Synthesis of dimethyl ether (DME) from methanol over solid-acid catalysts[J]. Appl Catal A:Gen, 1997,149(2):289-301. doi: 10.1016/S0926-860X(96)00275-X
TAN Y S, XIE H J, CUI H T, HAN Y Z, ZHONG B. Modification of Cu-based methanol synthesis catalyst for dimethyl ether synthesis from syngas in slurry phase[J]. Catal Today, 2005,104(1):25-29.
SUN J, YANG G H, YONEYAMA Y, TSUBAKI N. Catalysis chemistry of dimethyl ether synthesis[J]. ACS Catal, 2014,4(10):3346-3356. doi: 10.1021/cs500967j
SUN Ming, YU Lin, SUN Chang-yong, SONG Yi-bing, SUN Jian. Application of Dimethyl ether and development of its downstream products[J]. Fine Chem, 2003,20(11):695-699. doi: 10.3321/j.issn:1003-5214.2003.11.017
ZHANG Q D, TAN Y S, LIU G B, ZHANG J F, HAN Y Z. Rhenium oxide-modified H3PW12O40/TiO2 catalysts for selective oxidation of dimethyl ether to dimethoxy dimethyl ether[J]. Green Chem, 2014,16(11):4708-4715. doi: 10.1039/C4GC01373E
ZHANG Q D, WANG W F, ZHANG Z Z, HAN Y Z, TAN Y S. Low-temperature oxidation of dimethyl ether to polyoxymethylene dimethyl ethers over CNT-supported rhenium catalyst[J]. Catalysts, 2016,6(3)43. doi: 10.3390/catal6030043
GAO X J, WANG W F, GU Y Y, ZHANG Z Z, ZHANG J F, ZHANG Q D, TSUBAKI N, HAN Y Z, TAN Y S. Synthesis of polyoxymethylene dimethyl ethers from dimethyl ether direct oxidation over carbon-based catalysts[J]. ChemCatChem, 2018,10(1):273-279. doi: 10.1002/cctc.v10.1
ZHANG Z Z, ZHANG Q D, JIA L Y, WANG W F, XIAO H, HAN Y Z, TSUBAKI N, TAN Y S. Effects of MoO3 crystalline structure of MoO3-SnO2 catalysts on selective oxidation of glycol dimethyl ether to 1, 2-propandiol[J]. Catal Sci Technol, 2016,6(6):1842-1849. doi: 10.1039/C5CY00894H
HUANG X M, LIU J L, CHEN J L, XU Y D, SHEN W J. Mechanistic study of selective oxidation of dimethyl ether to formaldehyde over alumina-supported molybdenum oxide catalyst[J]. Catal Lett, 2006,108(1/2):79-86.
GAO Xiu-juan, WANG Wen-feng, ZHANG Zhen-zhou, ZHANG Qing-de, TAN Yi-sheng, HAN Yi-zhuo. Progresses in synthesis of polymethylene dimethyl ethers from dimethyl ether[J]. Petrochem Technol, 2017,46(2):143-150.
WANG Duo-ren. Production development and application prospects of methyl formate[J]. Chem Eng Oil Gas, 1998,27(3):149-151.
ZHOU Shou-zu. Production technology and application foreground of methyl formate[J]. Chem Technol Market, 2003,26(2):13-18.
AI M. The production of methyl formate by the vapor-phase oxidation of methanol[J]. J Catal, 1982,77(1):279-288.
AI M. The reaction of formaldehyde on various metal-oxide catalysts[J]. J Catal, 1983,83(1):141-150.
LIU H C, CHEUNG P, IGLESIA E. Structure and support effects on the selective oxidation of dimethyl ether to formaldehyde catalyzed by MoOx domains[J]. J Catal, 2003,217(1):222-232.
LIU H C, CHEUNG P, IGLESIA E. Effects of Al2O3 support modifications on MoOx and VOx catalysts for dimethyl ether oxidation to formaldehyde[J]. Phys Chem Chem Phys, 2003,5(17):3795-3800. doi: 10.1039/b302776g
LIU G B, ZHANG Q D, HAN Y Z, TSUBAKI N, TAN Y S. Selective oxidation of dimethyl ether to methyl formate over trifunctional MoO3-SnO2 catalyst under mild conditions[J]. Green Chem, 2013,15(6):1501-1504. doi: 10.1039/c3gc40279g
LIU G B, ZHANG Q D, HAN Y Z, TSUBAKI N, TAN Y S. Effects of the MoO3 structure of Mo-Sn catalysts on dimethyl ether oxidation to methyl formate under mild conditions[J]. Green Chem, 2015,17(2):1057-1064. doi: 10.1039/C4GC01591F
LIU Guang-bo, ZHANG Qing-de, HAN Yi-zhuo, TSUBAKI Noritatsu, TAN Yi-sheng. Low-temperature oxidation of dimeyhyl ether to methyl formate with high selectivity over MoO3-SnO2 catalysts[J]. J Fuel Chem Technol, 2013,41(2):223-227. doi: 10.3969/j.issn.0253-2409.2013.02.015
ZHANG Z Z, ZHANG Q D, JIA L Y, WANG W F, ZHANG T, HAN Y Z, TSUBAKI N, TAN Y S. Effects of tetrahedral molybdenum oxide species and MoOx domains on the selective oxidation of dimethyl ether under mild conditions[J]. Catal Sci Technol, 2016,6(9):2975-2983. doi: 10.1039/C5CY01569C
ZHANG Z, ZHANG Q, JIA L, WANG W, TIAN S P, WANG P, XIAO H, HAN Y, TSUBAKI N, TAN Y. The effects of the Mo-Sn contact interface on the oxidation reaction of dimethyl ether to methyl formate at a low reaction temperature[J]. Catal Sci Technol, 2016,6(15):6109-6117. doi: 10.1039/C6CY00460A
DEVAN R S, PATIL R A, LIN J H, MA Y R. One-dimensional metal-oxide nanostructures:Recent developments in synthesis, characterization, and applications[J]. Adv Funct Mater, 2012,22(16):3326-3370. doi: 10.1002/adfm.v22.16
ZHAO Yan-xia. Synthesis the one-dimensional nano-size MoO3 via acidification for hydrolyzing[J]. China Tungsten Ind, 2012,27(3):25-29. doi: 10.3969/j.issn.1009-0622.2012.03.007
ZHANG Jian-rong, GAO Lian. Hydrothermal synthesis of tin oxide nanoparticles[J]. J Inorg Mater, 2004,19(5):1177-1180. doi: 10.3321/j.issn:1000-324X.2004.05.034
GONCALVES F, MEDEIROS P R S, EON J G, APPEL L G. Active sites for ethanol oxidation over SnO2-supported molybdenum oxides[J]. Appl Catal A:Gen, 2000,193(1/2):195-202.
ROUTRAY K, ZHOU W, KIELY C J, GRUNERT W, WACHS I E. Origin of the synergistic interaction between MoO3 and iron molybdate for the selective oxidation of methanol to formaldehyde[J]. J Catal, 2010,275(1):84-98.
HERRMANN J M, VILLAIN F, APPEL L G. Characterization of Mo-Sn-O system by means of Raman spectroscopy and electrical conductivity measurements[J]. Appl Catal A:Gen, 2003,240(1/2):177-182.
LAKSHMI L J, ALYEA E C. ESR, FT-Raman spectroscopic and ethanol partial oxidation studies on MoO3/SnO2 catalysts made by metal oxide vapor synthesis[J]. Catal Lett, 1999,59(1):73-77.
HABER J, LALIK E. Catalytic properties of MoO3 revisited[J]. Catal Today, 1997,33(1/3):119-137.
NIWA M, IGARASHI J. Role of the solid acidity on the MoO3 loaded on SnO2 in the methanol oxidation into formaldehyde[J]. Catal Today, 1999,52(1):71-81.
FENG Q Y, YAO S L. Infrared study of ZrO2 surface sites using adsorbed probe molecules. 2. Dimethyl ether adsorption[J]. J Phys Chem B, 2000,104(47):11253-11257. doi: 10.1021/jp002509m
DU Ying-hui, XU Guo-ji. Hydrogen reduction of metal oxides to metals[J]. Atom Energy Sci Technol, 1999,33(4):360-362. doi: 10.3969/j.issn.1000-6931.1999.04.020
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054
Han ZHANG , Jianfeng SUN , Jinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
Ling Liu , Haibin Wang , Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080
Ping Song , Nan Zhang , Jie Wang , Rui Yan , Zhiqiang Wang , Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087
Zhengzheng LIU , Pengyun ZHANG , Chengri WANG , Shengli HUANG , Guoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039
Juan CHEN , Guoyu YANG . A porous-layered aluminoborate built by mixed oxoboron clusters and AlO4 tetrahedra. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 193-200. doi: 10.11862/CJIC.20240341
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
Liangzhen Hu , Li Ni , Ziyi Liu , Xiaohui Zhang , Bo Qin , Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001
Lirui Shen , Kun Liu , Ying Yang , Dongwan Li , Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035
Jiaxin Su , Jiaqi Zhang , Shuming Chai , Yankun Wang , Sibo Wang , Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
Jiaojiao Yu , Bo Sun , Na Li , Cong Wen , Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
Hexing SONG , Zan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
(a): Mo3Sn1; (b): Mo1Sn1; (c): Mo1Sn2; (d): Mo1Sn10
a: Mo3Sn1; b: Mo2Sn1; c: Mo1Sn1; d: Mo1Sn2; e: Mo1Sn3; f: Mo1Sn4; g: Mo1Sn5; h: Mo1Sn10
a: MoO3; b: Mo3Sn1; c: Mo2Sn1; d: Mo1Sn1; e: Mo1Sn2; f: Mo1Sn3; g: Mo1Sn4; h: Mo1Sn5; i: Mo1Sn10; j: SnO2
a: Mo3Sn1; b: Mo2Sn1; c: Mo1Sn1; d: Mo1Sn2; e: Mo1Sn3; f: Mo1Sn4; g: Mo1Sn5; h: Mo1Sn10
a: Mo3Sn1; b: Mo2Sn1; c: Mo1Sn1; d: Mo1Sn2; e: Mo1Sn3; f: Mo1Sn4; g: Mo1Sn5; h: Mo1Sn10
a: Mo3Sn1; b: Mo2Sn1; c: Mo1Sn1; d: Mo1Sn2; e: Mo1Sn3; f: Mo1Sn4; g: Mo1Sn5; h: Mo1Sn10
(a): MoO3 clusters; (b): MoOx oligomers; (c): MoOx monomers