Citation: YANG Qi, GAO Xiu-juan, FENG Ru, LI Ming-jie, ZHANG Jun-feng, ZHANG Qing-de, HAN Yi-zhuo, TAN Yi-sheng. MoO3-SnO2 catalyst prepared by hydrothermal synthesis method for dimethyl ether catalytic oxidation[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(8): 934-941. shu

MoO3-SnO2 catalyst prepared by hydrothermal synthesis method for dimethyl ether catalytic oxidation

  • Corresponding author: ZHANG Qing-de, qdzhang@sxicc.ac.cn
  • Received Date: 26 March 2019
    Revised Date: 28 May 2019

    Fund Project: Youth Innovation Promotion Association CAS 2014155CAS Interdisciplinary Innovation Team BK2018001the National Natural Science Foundation of China 21773283the National Natural Science Foundation of China 21373253The work was financially supported by the National Natural Science Foundation of China(21773283, 21373253), CAS Interdisciplinary Innovation Team(BK2018001), Youth Innovation Promotion Association CAS(2014155) and the Open Project Program of State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University(201624)the Open Project Program of State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University 201624

Figures(7)

  • MoO3-SnO2 composite metal oxide catalyst was synthesized by one-step hydrothermal synthesis method without precipitant. The effect of MoOx dispersion state on the catalytic performance of MoO3-SnO2 catalysts with different Mo/Sn molar ratios was investigated for dimethyl ether (DME) low-temperature oxidation to methyl formate (MF). MF selectivity reaches 77.6% with DME conversation of 22.0% over Mo1Sn2 at 150 ℃. The physiochemical properties of these catalysts were characterized by TEM, XRD, Raman, FT-IR, NH3-TPD and H2-TPR. The results showed that the addition of SnO2 into MoO3 affected the crystal structure of catalysts, forming MoOx species with different degree of dispersion on the surface of SnO2. The special architecture of MoOx-SnO2 plays a major role in modifying the acidity and the oxidizability of MoO3-SnO2 catalysts, leading to the obvious differences on catalytic activity.
  • 加载中
    1. [1]

      SEMELSBERGER T A, BORUP R L, GREENE H L. Dimethyl ether(DME) as an alternative fuel[J]. J Power Sources, 2006,156(2):497-511. doi: 10.1016/j.jpowsour.2005.05.082

    2. [2]

      XU M T, LUNSFORD J H, GOODMAN D W, BHATTACHARYYA A. Synthesis of dimethyl ether (DME) from methanol over solid-acid catalysts[J]. Appl Catal A:Gen, 1997,149(2):289-301. doi: 10.1016/S0926-860X(96)00275-X

    3. [3]

      TAN Y S, XIE H J, CUI H T, HAN Y Z, ZHONG B. Modification of Cu-based methanol synthesis catalyst for dimethyl ether synthesis from syngas in slurry phase[J]. Catal Today, 2005,104(1):25-29.  

    4. [4]

      SUN J, YANG G H, YONEYAMA Y, TSUBAKI N. Catalysis chemistry of dimethyl ether synthesis[J]. ACS Catal, 2014,4(10):3346-3356. doi: 10.1021/cs500967j

    5. [5]

      SUN Ming, YU Lin, SUN Chang-yong, SONG Yi-bing, SUN Jian. Application of Dimethyl ether and development of its downstream products[J]. Fine Chem, 2003,20(11):695-699. doi: 10.3321/j.issn:1003-5214.2003.11.017

    6. [6]

      ZHANG Q D, TAN Y S, LIU G B, ZHANG J F, HAN Y Z. Rhenium oxide-modified H3PW12O40/TiO2 catalysts for selective oxidation of dimethyl ether to dimethoxy dimethyl ether[J]. Green Chem, 2014,16(11):4708-4715. doi: 10.1039/C4GC01373E

    7. [7]

      ZHANG Q D, WANG W F, ZHANG Z Z, HAN Y Z, TAN Y S. Low-temperature oxidation of dimethyl ether to polyoxymethylene dimethyl ethers over CNT-supported rhenium catalyst[J]. Catalysts, 2016,6(3)43. doi: 10.3390/catal6030043

    8. [8]

      GAO X J, WANG W F, GU Y Y, ZHANG Z Z, ZHANG J F, ZHANG Q D, TSUBAKI N, HAN Y Z, TAN Y S. Synthesis of polyoxymethylene dimethyl ethers from dimethyl ether direct oxidation over carbon-based catalysts[J]. ChemCatChem, 2018,10(1):273-279. doi: 10.1002/cctc.v10.1

    9. [9]

      ZHANG Z Z, ZHANG Q D, JIA L Y, WANG W F, XIAO H, HAN Y Z, TSUBAKI N, TAN Y S. Effects of MoO3 crystalline structure of MoO3-SnO2 catalysts on selective oxidation of glycol dimethyl ether to 1, 2-propandiol[J]. Catal Sci Technol, 2016,6(6):1842-1849. doi: 10.1039/C5CY00894H

    10. [10]

      HUANG X M, LIU J L, CHEN J L, XU Y D, SHEN W J. Mechanistic study of selective oxidation of dimethyl ether to formaldehyde over alumina-supported molybdenum oxide catalyst[J]. Catal Lett, 2006,108(1/2):79-86.  

    11. [11]

      GAO Xiu-juan, WANG Wen-feng, ZHANG Zhen-zhou, ZHANG Qing-de, TAN Yi-sheng, HAN Yi-zhuo. Progresses in synthesis of polymethylene dimethyl ethers from dimethyl ether[J]. Petrochem Technol, 2017,46(2):143-150.  

    12. [12]

      WANG Duo-ren. Production development and application prospects of methyl formate[J]. Chem Eng Oil Gas, 1998,27(3):149-151.  

    13. [13]

      ZHOU Shou-zu. Production technology and application foreground of methyl formate[J]. Chem Technol Market, 2003,26(2):13-18.  

    14. [14]

      AI M. The production of methyl formate by the vapor-phase oxidation of methanol[J]. J Catal, 1982,77(1):279-288.  

    15. [15]

      AI M. The reaction of formaldehyde on various metal-oxide catalysts[J]. J Catal, 1983,83(1):141-150.  

    16. [16]

      LIU H C, CHEUNG P, IGLESIA E. Structure and support effects on the selective oxidation of dimethyl ether to formaldehyde catalyzed by MoOx domains[J]. J Catal, 2003,217(1):222-232.  

    17. [17]

      LIU H C, CHEUNG P, IGLESIA E. Effects of Al2O3 support modifications on MoOx and VOx catalysts for dimethyl ether oxidation to formaldehyde[J]. Phys Chem Chem Phys, 2003,5(17):3795-3800. doi: 10.1039/b302776g

    18. [18]

      LIU G B, ZHANG Q D, HAN Y Z, TSUBAKI N, TAN Y S. Selective oxidation of dimethyl ether to methyl formate over trifunctional MoO3-SnO2 catalyst under mild conditions[J]. Green Chem, 2013,15(6):1501-1504. doi: 10.1039/c3gc40279g

    19. [19]

      LIU G B, ZHANG Q D, HAN Y Z, TSUBAKI N, TAN Y S. Effects of the MoO3 structure of Mo-Sn catalysts on dimethyl ether oxidation to methyl formate under mild conditions[J]. Green Chem, 2015,17(2):1057-1064. doi: 10.1039/C4GC01591F

    20. [20]

      LIU Guang-bo, ZHANG Qing-de, HAN Yi-zhuo, TSUBAKI Noritatsu, TAN Yi-sheng. Low-temperature oxidation of dimeyhyl ether to methyl formate with high selectivity over MoO3-SnO2 catalysts[J]. J Fuel Chem Technol, 2013,41(2):223-227. doi: 10.3969/j.issn.0253-2409.2013.02.015 

    21. [21]

      ZHANG Z Z, ZHANG Q D, JIA L Y, WANG W F, ZHANG T, HAN Y Z, TSUBAKI N, TAN Y S. Effects of tetrahedral molybdenum oxide species and MoOx domains on the selective oxidation of dimethyl ether under mild conditions[J]. Catal Sci Technol, 2016,6(9):2975-2983. doi: 10.1039/C5CY01569C

    22. [22]

      ZHANG Z, ZHANG Q, JIA L, WANG W, TIAN S P, WANG P, XIAO H, HAN Y, TSUBAKI N, TAN Y. The effects of the Mo-Sn contact interface on the oxidation reaction of dimethyl ether to methyl formate at a low reaction temperature[J]. Catal Sci Technol, 2016,6(15):6109-6117. doi: 10.1039/C6CY00460A

    23. [23]

      DEVAN R S, PATIL R A, LIN J H, MA Y R. One-dimensional metal-oxide nanostructures:Recent developments in synthesis, characterization, and applications[J]. Adv Funct Mater, 2012,22(16):3326-3370. doi: 10.1002/adfm.v22.16

    24. [24]

      ZHAO Yan-xia. Synthesis the one-dimensional nano-size MoO3 via acidification for hydrolyzing[J]. China Tungsten Ind, 2012,27(3):25-29. doi: 10.3969/j.issn.1009-0622.2012.03.007

    25. [25]

      ZHANG Jian-rong, GAO Lian. Hydrothermal synthesis of tin oxide nanoparticles[J]. J Inorg Mater, 2004,19(5):1177-1180. doi: 10.3321/j.issn:1000-324X.2004.05.034

    26. [26]

      GONCALVES F, MEDEIROS P R S, EON J G, APPEL L G. Active sites for ethanol oxidation over SnO2-supported molybdenum oxides[J]. Appl Catal A:Gen, 2000,193(1/2):195-202.  

    27. [27]

      ROUTRAY K, ZHOU W, KIELY C J, GRUNERT W, WACHS I E. Origin of the synergistic interaction between MoO3 and iron molybdate for the selective oxidation of methanol to formaldehyde[J]. J Catal, 2010,275(1):84-98.  

    28. [28]

      HERRMANN J M, VILLAIN F, APPEL L G. Characterization of Mo-Sn-O system by means of Raman spectroscopy and electrical conductivity measurements[J]. Appl Catal A:Gen, 2003,240(1/2):177-182.  

    29. [29]

      LAKSHMI L J, ALYEA E C. ESR, FT-Raman spectroscopic and ethanol partial oxidation studies on MoO3/SnO2 catalysts made by metal oxide vapor synthesis[J]. Catal Lett, 1999,59(1):73-77.  

    30. [30]

      HABER J, LALIK E. Catalytic properties of MoO3 revisited[J]. Catal Today, 1997,33(1/3):119-137.  

    31. [31]

      NIWA M, IGARASHI J. Role of the solid acidity on the MoO3 loaded on SnO2 in the methanol oxidation into formaldehyde[J]. Catal Today, 1999,52(1):71-81.  

    32. [32]

      FENG Q Y, YAO S L. Infrared study of ZrO2 surface sites using adsorbed probe molecules. 2. Dimethyl ether adsorption[J]. J Phys Chem B, 2000,104(47):11253-11257. doi: 10.1021/jp002509m

    33. [33]

      DU Ying-hui, XU Guo-ji. Hydrogen reduction of metal oxides to metals[J]. Atom Energy Sci Technol, 1999,33(4):360-362. doi: 10.3969/j.issn.1000-6931.1999.04.020

  • 加载中
    1. [1]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    2. [2]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    3. [3]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    4. [4]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    5. [5]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    6. [6]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    7. [7]

      Juan CHENGuoyu YANG . A porous-layered aluminoborate built by mixed oxoboron clusters and AlO4 tetrahedra. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 193-200. doi: 10.11862/CJIC.20240341

    8. [8]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    9. [9]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    10. [10]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    11. [11]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    12. [12]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    13. [13]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    14. [14]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    15. [15]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    16. [16]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    17. [17]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    18. [18]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    19. [19]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    20. [20]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

Metrics
  • PDF Downloads(7)
  • Abstract views(890)
  • HTML views(123)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return