Citation: JIANG Xiao-yan, LU Qiang, DONG Xiao-chen, HU Bin, DONG Chang-qing. Theoretical study on the effects of the substituent groups on the homolysis of the ether bond in lignin trimer model compounds[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(3): 335-341. shu

Theoretical study on the effects of the substituent groups on the homolysis of the ether bond in lignin trimer model compounds

  • Corresponding author: LU Qiang, qianglu@mail.ustc.edu.cn
  • Received Date: 25 September 2015
    Revised Date: 5 December 2015

    Fund Project: National Natural Science Foundation of China 51576064and Fundamental Research Funds for the Central Universities 2014ZD17

Figures(2)

  • The homolytic bond dissociation energies (BDEs) of Cα-O and Cβ-O bonds in 27 lignin trimer model compounds were calculated by employing density functional theory methods at M062X level with 6-31++G (d, p) basis set; the effects of various substituent groups (CH3, CH2OH and OCH3) at different positions on the BDEs of Cα-O and Cβ-O bonds were investigated. The results indicated that a single methoxyl group at R2 or R3 has a minor influence on the BDE of Cβ-O bond, whereas two methoxyl groups at R2 and R3 lead to an obvious decrease in the BDE of Cβ-O bond. The decrement in the BDE of Cβ-O bond from the methoxyl groups at R2 and R3 can be enhanced by the methoxyl groups at R4 and R5, but is hardly influenced by the substituent groups at R1. Meanwhile, the BDE of Cα-O bond is gradually reduced when the H atoms at R4 and R5 are successively substituted with methoxyl groups; the decrement in the BDE of Cα-O bond from the methoxyl groups at R4 and R5 can be strengthened by the methoxyl groups at R2 and R3. Furthermore, the methyl and hydroxymethyl groups at R1 can gradually increase the BDE of Cα-O bond and this effect is weakened when the H atoms at R2 and R3 are successively substituted with methoxyl groups. The methyl group at R1 has little influence on the BDE of Cβ-O bond, which is however dramatically increased by the hydroxymethyl group at R1.
  • 加载中
    1. [1]

      BRIDGWATER A V, PEACOCKE G V C. Fast pyrolysis processes for biomass[J]. Renew Sust Energ Rev, 2000,4(1):1-73. doi: 10.1016/S1364-0321(99)00007-6

    2. [2]

      BRIDGWATER A V. Review of fast pyrolysis of biomass and product upgrading[J]. Biomass Bioenerg, 2012,38:68-94. doi: 10.1016/j.biombioe.2011.01.048

    3. [3]

      WANG Qi, WANG Shu-rong, WANG Le, TAN Hong, LUO Zhong-yang, CEN Ke-fa. Experimental study of bimass flash pyrolysis for bio-oil production[J]. J Eng Thermophys, 2007,28(1):173-176.  

    4. [4]

      BAI X, KIM K H, BROWN R C, DALLUGE E, HUTCHINSON C, LEE Y J, DALLUGE D. Formation of phenolic oligomers during fast pyrolysis of lignin[J]. Fuel, 2014,128:170-179. doi: 10.1016/j.fuel.2014.03.013

    5. [5]

      HUANG Jin-bao, LIU Chao, REN Li-rong, TONG Hong, LI Wei-min, WU Dan. Studies on pyrolysis mechanism of syringol as lignin model compound by quantum chemistry[J]. J Fuel Chem Technol, 2013,41(6):657-666. doi: 10.1016/S1872-5813(13)60031-6 

    6. [6]

      DONG C Q, ZHANG Z F, LU Q, YANG Y P. Characteristics and mechanism study of analytical fast pyrolysis of poplar wood[J]. Energy Convers Manage, 2012,57:49-59. doi: 10.1016/j.enconman.2011.12.012

    7. [7]

      CHU S, SUBRAHMANYAM A V, HUBER G W. The pyrolysis chemistry of a β-O-4 type oligomeric lignin model compound[J]. Green Chem, 2013,15(1):125-136. doi: 10.1039/C2GC36332A

    8. [8]

      DORRESTIJN E, LAARHOVEN L J J, ARENDS I W C E, MULDER P. The occurrence and reactivity of phenoxyl linkages in lignin and low rank coal[J]. J Anal Appl Pyrolysis, 2000,54(1/2):153-192.  

    9. [9]

      KIM K H, BAI X, BROWN R C. Pyrolysis mechanisms of methoxy substituted α-O-4 lignin dimeric model compounds and detection of free radicals using electron paramagnetic resonance analysis[J]. J Anal Appl Pyrolysis, 2014,110:254-263. doi: 10.1016/j.jaap.2014.09.008

    10. [10]

      WANG Hua-jing, ZHAO Yan, WANG Chen, FU Yao, GUO Qing-xiang. Theoretical study on the pyrolysis process of lignin dimer model compounds[J]. Acta Chim Sin, 2009,67(9):893-900.  

    11. [11]

      ZHANG Yang, JIANG Xiao-yan, WANG Xian-hua, LU Qiang, DONG Chang-qing, YANG Yong-ping. Study on pyrolysis mechanism of lignin dimer model with β-O-4 linkage[J]. Acta Energ Sol Sin, 2015,36(2):265-273.  

    12. [12]

      HUANG J, HE C. Pyrolysis mechanism of α-O-4 linkage lignin dimer: A theoretical study[J]. J Anal Appl Pyrolysis, 2015,113:655-664. doi: 10.1016/j.jaap.2015.04.012

    13. [13]

      BRITT P F, BUCHANAN A C, COONEY M J, MARTINEAU D R. Flash vacuum pyrolysis of methoxy-substituted lignin model compounds[J]. J Org Chem, 2000,65(5):1376-1389. doi: 10.1021/jo991479k

    14. [14]

      BRITT P F, KIDDER M K, BUCHANAN A C. Oxygen substituent effects in the pyrolysis of phenethyl phenyl ethers[J]. Energ Fuel, 2007,21(6):3102-3108. doi: 10.1021/ef700354y

    15. [15]

      BESTE A, BUCHANAN A C. Computational study of bond dissociation enthalpies for lignin model compounds. Substituent effects in phenethyl phenyl ethers[J]. J Org Chem, 2009,74(7):2837-2841. doi: 10.1021/jo9001307

    16. [16]

      BESTE A, BUCHANAN A C. Computational investigation of the pyrolysis product selectivity for alpha-hydroxy phenethyl phenyl ether and phenethyl phenyl ether: Analysis of substituent effects and reactant conformer selection[J]. J Phys Chem A, 2013,117(15):3235-3242. doi: 10.1021/jp4015004

    17. [17]

      JIANG Xiao-yan, CHEN Chen, DONG Xiao-chen, LU Qiang, DONG Chang-qing. Computational study on pyrolysis mechanism of an α, β-diether-type lignin trimer model compound[J]. Trans Chin Soc Agric Eng, 2015,31(16):229-234.  

    18. [18]

      FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 09[CP]. Gaussian, Inc. Pittsburgh PA, 2009.

    19. [19]

      BESTE A, BUCHANAN A C. Substituent effects on the reaction rates of hydrogen abstraction in the pyrolysis of phenethyl phenyl ethers[J]. Energy Fuels, 2010,24:2857-2867. doi: 10.1021/ef1001953

    20. [20]

      PARTHASARATHI R, ROMERO R A, REDONDO A, GNANAKARAN S. Theoretical study of the remarkably diverse linkages in lignin[J]. J Phys Chem Lett, 2011,2(20):2660-2666. doi: 10.1021/jz201201q

    21. [21]

      ELDER T. A computational study of pyrolysis reactions of lignin model compounds[J]. Holzforschung, 2010,64(4):435-440.  

    22. [22]

      HUANG J, LIU C, WU D, TONG H, REN L. Density functional theory studies on pyrolysis mechanism of β-O-4 type lignin dimer model compound[J]. J Anal Appl Pyrolysis, 2014,109:98-108. doi: 10.1016/j.jaap.2014.07.007

    23. [23]

      ZHANG Fang-pei, CHENG Xin-lu, LIU Zi-jiang, HU Dong, LIU Yong-gang. Density functional studies on the bond dissociation energy and pyrolysis mechanism of propyl nitrate[J]. Chin J High Pressure Phys, 2005,19(2):189-192.  

    24. [24]

      HUANG Jin-bao, WU Shu-bin, CHENG Hao, LEI Ming, LIANG Jia-jin, TONG Hong. Theoretical study of bond dissociation energies for lignin model compounds[J]. J Fuel Chem Technol, 2015,43(4):429-436. doi: 10.1016/S1872-5813(15)30011-6 

    25. [25]

      KIM S, CHMELY S C, NIMLOS M R, BOMBLE Y J, FOUST T D, PATON R S, BECKHAM G T. Computational study of bond dissociation enthalpies for a large range of native and modified lignins[J]. J Phys Chem Lett, 2011,2(22):2846-2852. doi: 10.1021/jz201182w

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    3. [3]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    6. [6]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    7. [7]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    8. [8]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    9. [9]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    10. [10]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    11. [11]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    12. [12]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    13. [13]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    14. [14]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    15. [15]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    16. [16]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    17. [17]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    18. [18]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    19. [19]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    20. [20]

      Weikang Wang Yadong Wu Jianjun Zhang Kai Meng Jinhe Li Lele Wang Qinqin Liu . 三聚氰胺泡沫支撑的S型硫铟锌镉/硫掺杂氮化碳异质结的绿色H2O2合成:协同界面电荷转移调控与局域光热效应. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-. doi: 10.1016/j.actphy.2025.100093

Metrics
  • PDF Downloads(0)
  • Abstract views(542)
  • HTML views(54)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return