Citation: Zou Ying, Wang Hongtao, Sheng Liangquan. Intermediate Temperature Fuel Cell Performance of the Composite Electrolyte Ce0.8Gd0.2O2-α-(Li/K)2CO3[J]. Chemistry, ;2017, 80(6): 558-562. shu

Intermediate Temperature Fuel Cell Performance of the Composite Electrolyte Ce0.8Gd0.2O2-α-(Li/K)2CO3

  • Corresponding author: Wang Hongtao, hongtaoking3@163.com
  • Received Date: 19 December 2016
    Accepted Date: 6 February 2017

Figures(7)

  • Ce0.8Gd0.2O2-α was synthesized by sol-gel method at 900℃, which is much lower than the conventional sintering temperature (1400℃), and was further compounded with (Li/K)2CO3. The XRD pattern showed that there is no chemical reaction between Ce0.8Gd0.2O2-α and (Li/K)2CO3. The SEM images demonstrated that the composite electrolyte is sufficiently dense and does not have holes. The conductivities of the composite electrolyte in dry nitrogen atmosphere were measured using electrochemical analyzer. The highest conductivity was observed to be 6.4×10-2 S·cm-1 at 600℃, which is higher than that of single CeO2 material. The H2/O2 fuel cell performance test showed that the electrolyte impedance and polarization impedance under open-circuit condition are 2.7Ω and 0.8Ω, respectively, and the maximum output power density is 267mW·cm-2 at 600℃.
  • 加载中
    1. [1]

      Y Chen, N Orlovskaya, E A Payzant et al. J. Eur. Ceram. Soc., 2015, 35:951~958. 

    2. [2]

       

    3. [3]

      J Kondoh. J. Alloy. Compd., 2004, 375:270~282. 

    4. [4]

       

    5. [5]

      T Ueno, Y Hirata, T Shimonosono. Ceram. Int., 2016, 42:1926~1932. 

    6. [6]

       

    7. [7]

      T V Gestel, D Sebold, H P Buchkremer. J. Eur. Ceram. Soc., 2015, 35:1505~1515. 

    8. [8]

      J H Joo, G M Choi. Solid State Ionics, 2007, 178:1602~1607. 

    9. [9]

      T Kobayashi, S R Wang, M Dokiya. Solid State Ionics, 1999, 126:349~357. 

    10. [10]

      L Zhang, R Lan, X X Xu et al. J. Power Sources, 2009, 194:967~971. 

    11. [11]

    12. [12]

    13. [13]

      R Dziembaj, M Molenda, M M Zaitz et al. Solid State Ionics, 2013, 251:18~22. 

    14. [14]

      A Gondolini, E Mercadelli, A Sanson et al. J. Eur. Ceram. Soc., 2013, 33:67~77. 

    15. [15]

      M Prekajski, M Stojmenovic, A Radojkovic et al. J. Alloy. Compd., 2014, 617:563~568. 

    16. [16]

      Y Zhao, Z Xu, C Xia et al. Int. J. Hydrogen Energ., 2013, 38:1553~1559. 

    17. [17]

    18. [18]

      S Shawuti, M A Gulgun. J. Power Sources, 2014, 267:128~135. 

    19. [19]

      B Zhu, S Li, B E Mellander. Electrochem. Commun., 2008,10:302~305. 

    20. [20]

      S Rajesh, D A Macedo, R M Nascimento et al. Int. J. Hydrogen Energ., 38(2013) 16539~16545.

    21. [21]

      J T Kim, T H Lee, K Y Park et al. J. Power Sources, 2015, 275:563~572. 

    22. [22]

      J Huang, Z Mao, Z Liu et al. J. Power Sources, 2008,175:238~243. 

    23. [23]

      J Huang, Z Gao, Z Mao. Int. J. Hydrogen Energ., 2010, 35:4270~4275. 

    24. [24]

      N S Ferreira, R S Angélica, V B Marques et al. Mater. Lett., 2016, 165:139~142. 

    25. [25]

      M O Mazan, J Marrero-Jerez, A Soldati et al. Int. J. Hydrogen Energ., 2015, 40:3981~3989. 

    26. [26]

      A I B Rondao, S G Patricio, F M L Figueiredo et al. Int. J. Hydrogen Energ., 2014, 39:5460~5469. 

    27. [27]

      N C T Martins, S Rajesh, F M B Marques et al. Mater. Res. Bull., 2015, 70:449~455. 

    28. [28]

      S Kobi, N Jaiswal, D Kumar et al. J. Alloy. Compd., 2016, 658:513~519. 

    29. [29]

      X Liu, N Fechler, M Antonietti et al. Chem. Soc. Rev., 2013, 42:8237~8265. 

    30. [30]

      N Sammes, R Phillips, A Smirnova et al. J. Power Sources, 2004, 134:153~159. 

    31. [31]

      C Xia, Y Li, Y Tian et al. J. Power Sources, 2009, 188:156~162. 

    32. [32]

      M Chen, H Zhang, L Fan et al. Int. J. Hydrogen Energ., 2014, 39:12309~12316. 

    33. [33]

      H Wang, J Liu. Ceram. Int., 2016, 42:18136~18140. 

    34. [34]

      M Afzal, R Raza, S Du et al. Electrochim. Acta, 2015, 178:385~391. 

  • 加载中
    1. [1]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    2. [2]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    3. [3]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    4. [4]

      Kailu GuoJinzhi JiaHuijiao WangZiyu HaoYinjian ChenKe ShiHaixia WuCailing Xu . Structural tuning and reconstruction of CeO2-coupled nickel selenides for robust water oxidation. Chinese Chemical Letters, 2025, 36(8): 110888-. doi: 10.1016/j.cclet.2025.110888

    5. [5]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    6. [6]

      Shiqi Zhang Heng Zhang Aiwen Lei . 从物理化学的角度看化学能的利用. University Chemistry, 2025, 40(6): 310-315. doi: 10.12461/PKU.DXHX202408124

    7. [7]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    8. [8]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    9. [9]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    10. [10]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    11. [11]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    12. [12]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Jiandong LiuZhijia ZhangKamenskii MikhailVolkov FilippEliseeva SvetlanaJianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2308048-0. doi: 10.3866/PKU.WHXB202308048

    15. [15]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    16. [16]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    17. [17]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    18. [18]

      Da WangXiaobin YinJianfang WuYaqiao LuoSiqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029

    19. [19]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    20. [20]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

Metrics
  • PDF Downloads(3)
  • Abstract views(504)
  • HTML views(63)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return