Citation: WU Han, WU Kai, ZHANG Hui-yan. Fenton pretreatment of lignin to remove methoxy in pyrolytic bio-oil[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(10): 1186-1192. shu

Fenton pretreatment of lignin to remove methoxy in pyrolytic bio-oil

  • Corresponding author: ZHANG Hui-yan, hyzhang@seu.edu.cn
  • Received Date: 25 August 2020
    Revised Date: 4 October 2020

    Fund Project: The project was supported by the National Key Research and Development Program of China (2019YFD1100602), the National Nature Science Fund for Excellent Young Scholar (China)(51822604) and the Nature Science Fund of Jiangsu Province for Distinguished Young Scholar (China) (BK20180014)The Nature Science Fund of Jiangsu Province for Distinguished Young Scholar (China) BK20180014the National Key Research and Development Program of China 2019YFD1100602The National Nature Science Fund for Excellent Young Scholar (China) 51822604

Figures(6)

  • A Fenton solution with different H2O2 concentrations was used to pretreat an alkali lignin (AL), and combined with fast pyrolysis, the change in the content of phenolic compounds containing methoxy group in light bio-oil was explored, also, the influence of the Fenton solution on the structure of the alkali lignin was also studied. The results show that the peak area of phenolic compounds containing methoxy groups in light bio-oil decreases from 7.3×109 with AL (untreated alkali lignin) to 5.2×109 with 13-FML (pretreated alkali lignin with Fenton solution at a concentration of 13 mL/g H2O2), decreasing by about 29%. While the peak area of phenolic compounds containing methyl groups and ethyl groups increases from 3.9×109 with AL to 7.2×109 with 13-FML, increasing by about 1.85 times. At the same time, the yield of light bio-oil increases from 22.4% to 28.7%. Through FT-IR, 1H NMR and 13C NMR analysis, it is found that Fenton pretreatment can destroy the condensational structural units of lignin and reduce the content of methoxy, thus providing favorable conditions for subsequent fast pyrolysis to produce bio-oil with low methoxy content.
  • 加载中
    1. [1]

      HUANG Yu-qian, WU Yu-ting, ZHENG An-qing, ZHAO Zeng-li, LI Hai-bin. Co-pyrolysis characteristics of lignin and lignite:Analytical Py-GC-MS study[J]. J Circ Syst, 2017,5(5):333-340.  

    2. [2]

      PONNUSAMY V K, DINH D N, DHARMARAJA J, SHOBANA S, BANU J R, SARATALE R G, CHANG S W, KUMAR G. A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential[J]. Bioresour Technol, 2019,271:462-472. doi: 10.1016/j.biortech.2018.09.070

    3. [3]

      RAGAUSKAS A J, BECKHAM G T, BIDDY M J, CHANDRA R, CHEN F, DAVIS M F, DAVISON B H, DIXON R A, GILNA P, KELLER M, LANGAN P, NASKAR A K, SADDLER J N, TSCHAPLINSKI T J, TUSKAN G A, WYMAN C E. Lignin valorization:Improving lignin processing in the biorefinery[J]. Science, 2014,344(12468436185)709.  

    4. [4]

      DONG Zhi-guo, LIU Zi-hao, LI Jian, YANG Hai-ping, WANG Lei, CHEN Han-ping. Study on catalytic pyrolysis characteristics of lignin ultrafiltrated from black liquor[J]. Acta Energ Sol Sin, 2020,41(2):58-65.  

    5. [5]

      MA Huan-huan, WAN Yi-ling, XIE Ling-xiang, MENG Fan-rui, ZHOU Jian-bin. Structural characterization and pyrolysis characteristics of apricot shell lignin[J]. Biomass Chem Eng, 2019,53(6):27-32.  

    6. [6]

      WANG Fei, ZHENG Yun-wu, ZHENG Zhi-feng. Yields and compositions of products by pyrolysis of yunnan pine[J]. Biomass Chem Eng, 2015,49(4):14-18.  

    7. [7]

      ZHENG An-qing, ZHAO Zeng-li, JIANG Hong-ming, ZHANG Wei, CHANG Sheng, WU Wen-qiang, LI Hai-bin. Effect of pretreatment temperature of pine on bio-oil characteristics[J]. J Fuel Chem Technol, 2012,40(1):29-36.  

    8. [8]

      ZHANG H, XIAO R, WANG D, ZHONG Z, SONG M, PAN Q, HE G. Catalytic fast pyrolysis of biomass in a fluidized bed with fresh and spent fluidized catalytic cracking (FCC) catalysts[J]. Energy Fuels, 2009,23(12):6199-6206. doi: 10.1021/ef900720m

    9. [9]

      DAI G, ZOU Q, WANG S, ZHAO Y, ZHU L, HUANG Q. Effect of torrefaction on the structure and pyrolysis behavior of lignin[J]. Energy Fuels, 2018,32(4):4160-4166.  

    10. [10]

      HONG Chen, XING Yi, SI Yan-xiao, WANG Zhi-qiang, LIU Min. Influence of Fenton's reagent oxidation on sludge dewaterability[J]. Res Environ Sci, 2014,27(6):615-622.  

    11. [11]

      WU K, YING W, SHI Z, YANG H, ZHENG Z, ZHANG J, YANG J. Enhancing effect of residual lignins from D. sinicus pretreated with fenton chemistry on enzymatic digestibility of cellulose[J]. Energy Technol, 2018,6(9):1755-1762. doi: 10.1002/ente.201700880

    12. [12]

      WU K, YING W, SHI Z, YANG H, ZHENG Z, ZHANG J, YANG J. Fenton reaction-oxidized bamboo lignin surface and structural modification to reduce nonproductive cellulase binding and improve enzyme digestion of cellulose[J]. ACS Sustainable Chem. Eng, 2018,6(3):3853-3861.  

    13. [13]

      ASMADI M, KAWAMOTO H, SAKA S. Thermal reactions of guaiacol and syringol as lignin model aromatic nuclei[J]. J Anal Appl Pyrolysis, 2011,92(1):88-98. doi: 10.1016/j.jaap.2011.04.011

    14. [14]

      WU K, WU H, ZHANG H, ZHANG B, WEN C, HU C, LIU C, LIU Q. Enhancing levoglucosan production from waste biomass pyrolysis by Fenton pretreatment[J]. Waste Manage, 2020,108:70-77. doi: 10.1016/j.wasman.2020.04.023

    15. [15]

      MENG Xin. Selectivity pyrolysis of biomass for chemical of levoglucosan and levoglucosenone[D]. Nanjing: Southeast University, 2017.

    16. [16]

      LIU Q, WANG S, ZHENG Y, LUO Z, CEN K. Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis[J]. J Anal Appl Pyrolysis, 2008,82(1):170-177. doi: 10.1016/j.jaap.2008.03.007

    17. [17]

      CARLSON T R, JAE J, LIN Y, TOMPSETT G A, HUBER G W. Catalytic fast pyrolysis of glucose with HZSM-5:The combined homogeneous and heterogeneous reactions[J]. J Catal, 2010,270(1):110-124.  

    18. [18]

      WU J, CHANG G, LI X, LI J, GUO Q. Effects of NaOH on the catalytic pyrolysis of lignin/HZSM-5 to prepare aromatic hydrocarbons[J]. J Anal Appl Pyrolysis, 2020,146(104775).  

    19. [19]

      ZHANG J, KIM K H, CHOI Y S, MOTAGAMWALA A H, DUMESIC J A, BROWN R C, SHANKS B H. Comparison of fast pyrolysis behavior of cornstover lignins isolated by different methods[J]. ACS Sustainable Chem Eng, 2017,5(7):5657-5661. doi: 10.1021/acssuschemeng.7b01393

    20. [20]

      OUYANG Xin-ping, TAN You-dan, QIU Xue-qing. Oxidative degradation of lignin for producing monophenolic compounds[J]. J Fuel Chem Technol, 2014,42(6):677-682.  

    21. [21]

      YANG Q, SHI J, LIN L. Characterization of structural changes of lignin in the process of cooking of bagasse with solid alkali and active oxygen as a pretreatment for lignin conversion[J]. Energy Fuels, 2012,26(11):6999-7004. doi: 10.1021/ef300983h

    22. [22]

      LIN X, SUI S, TAN S, J R. PITTMAN C U, SUN J, ZHANG Z. Fast pyrolysis of four lignins from different isolation processes using Py-GC/MS[J]. Energies, 2015,8(6):5107-5121. doi: 10.3390/en8065107

    23. [23]

      LI H, CHAI X, LIU M, DENG Y. Novel method for the determination of the methoxyl content in lignin by headspace gas chromatography[J]. J Agric Food Chem, 2012,60(21):5307-5310. doi: 10.1021/jf300455g

    24. [24]

      MOUSAVIOUN P, DOHERTY W O S. Chemical and thermal properties of fractionated bagasse soda lignin[J]. Ind. Crop. Prod, 2010,31(1):52-58. doi: 10.1016/j.indcrop.2009.09.001

    25. [25]

      WANG S, RU B, LIN H, SUN W, LUO Z. Pyrolysis behaviors of four lignin polymers isolated from the same pine wood[J]. Bioresour Technol, 2015,182:120-127. doi: 10.1016/j.biortech.2015.01.127

  • 加载中
    1. [1]

      Qishen WangChangzhao ChenMengqing LiLingmin WuKai Dai . Lignin derived carbon quantum dots and oxygen vacancies coregulated S-scheme LCQDs/Bi2WO6 heterojunction for photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(11): 100147-0. doi: 10.1016/j.actphy.2025.100147

    2. [2]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    3. [3]

      Junjie TANGYunting ZHANGZhengjiang LIUJiani WU . Preparation of CeO2 by starch template method for photo-Fenton degradation of methyl orange. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1617-1631. doi: 10.11862/CJIC.20240420

    4. [4]

      Jiangyuan QiuTao YuJunxin ChenWenxuan LiXiaoxuan Zhangjinsheng LiRui GuoZaiyin HuangXuanwen Liu . Modulate surface potential well depth of Bi12O17Cl2 by FeOOH in Bi12O17Cl2@FeOOH heterojunction to boost piezoelectric charge transfer and piezo-self-Fenton catalysis. Acta Physico-Chimica Sinica, 2026, 42(1): 100157-0. doi: 10.1016/j.actphy.2025.100157

    5. [5]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    6. [6]

      Rohit KumarAnita SudhaikAftab Asalam Pawaz KhanVan Huy NeguyenArchana SinghPardeep SinghSourbh ThakurPankaj Raizada . Designing tandem S-scheme photo-catalytic systems: Mechanistic insights, characterization techniques, and applications. Acta Physico-Chimica Sinica, 2025, 41(11): 100150-0. doi: 10.1016/j.actphy.2025.100150

    7. [7]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    8. [8]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    11. [11]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    12. [12]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    13. [13]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    14. [14]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    15. [15]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    16. [16]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    17. [17]

      Jingjie Tang Luying Xie Jiayu Liu Shangyu Shi Xinyu Sun Jiayang Lin Qikun Yang Chuan'ang Yu Zecheng Wang Yingying Wang Zengyang Xie . Efficient Rapid Synthesis and Antibacterial Activities of Tosylhydrazones: A Recommended Innovative Chemistry Experiment for Undergraduate Medical University. University Chemistry, 2024, 39(3): 316-326. doi: 10.3866/PKU.DXHX202309091

    18. [18]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    19. [19]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    20. [20]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

Metrics
  • PDF Downloads(1)
  • Abstract views(1173)
  • HTML views(266)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return