Citation: ZHAO Wei, YANG Zhi-yuan, LI Zhen, ZHOU An-ning. Influence of electrochemical treatment on surface structure and flotability of Shenmu coal macerals[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(4): 400-407. shu

Influence of electrochemical treatment on surface structure and flotability of Shenmu coal macerals

  • Corresponding author: ZHOU An-ning, psu564@139.com
  • Received Date: 9 December 2016
    Revised Date: 22 February 2017

    Fund Project: Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources of China KF2015-2Cultivation Fund of Xi'an University of Science and Technology 201622the National Natural Science Foundation of China 51404194

Figures(8)

  • The effect of the electrochemical treatment on the surface structure and flotability of the macerals in Shenmu coal was studied, which aimed to provide a theoretical foundation for the separation by electrochemical flotation. The influence of anode and cathode on the surface structure, surface potential and wettability of Shenmu vitrinite and inertinite was investigated. The results show that the electrochemical treatment has a significant effect on the oxygen-containing functional groups of coal macerals such as-OH, -COOH, etc. The surface zeta potential of macerals moves towards the electronegativity and the wettability of macerals increases when the treatment is conducted with electrochemical anode. However, the surface zeta potential of macerals moves towards the electropositivity and the wettability decreases when the electrochemical cathode is used. The variation trend of contact angle for the vitrinite treated with electrochemical anode is more obvious, while the inertinite treated with electrochemical cathode is more conspicuous.
  • 加载中
    1. [1]

      LI Wen-hua, CHEN Ya-fei, CHEN Wen-min, LI Xiang-li. Distribution features of micro-constituents for coal in China main mining area[J]. Coal Sci Technol, 2000,28(9):31-34.  

    2. [2]

      HELLE S, GORDON A, ALFARO G, GARCIÍA X, ULLOA C. Coal blend combustion:Link between Rachel Walker, Maria Mastalerz. Functional group and individual maceral chemistry of high volatile bituminous coals from southern Indiana:Controls on coking[J]. Int J Coal Geol, 2004,58(3):181-191. doi: 10.1016/j.coal.2003.10.008

    3. [3]

      ZHAO Y, HU H, JIN L, HE X, WU B. Pyrolysis behavior of vitrinite and inertinite from Chinese Pingshuo coal by TG-MS and in a fixed bed reactor[J]. Fuel Process Technol, 2011,92(4):780-786. doi: 10.1016/j.fuproc.2010.09.005

    4. [4]

      JIN L, HAN K, WANG J, HU H. Direct liquefaction behaviors of Bulianta coal and its macerals[J]. Fuel Process Technol, 2014,128:232-237. doi: 10.1016/j.fuproc.2014.07.033

    5. [5]

      SHU X, WANG Z, XU J. Separation and preparation of macerals in Shenfu coals by flotation[J]. Fuel, 2002,81:495-501. doi: 10.1016/S0016-2361(01)00106-5

    6. [6]

      LIN Zhi-mu. Separation of coal macerals (floation) and observation of coal combustion behavior[J]. J Shandong Min Inst, 1990,9(1):74-79.  

    7. [7]

      FECKO P, PECTOVA I, OVCARI P, CABLIK V, TORA B. Influence of petrographical composition on coal flotability[J]. Fuel, 2005,84(14/15):1901-1904.  

    8. [8]

      JORJANI E, ESMAEILI S, KHORAMI M T. The effect of particle size on coal maceral group's separation using flotation[J]. Fuel, 2013,114:10-15. doi: 10.1016/j.fuel.2012.09.025

    9. [9]

      ZHAO W, YANG F, LI Y, QU J, ZHOU A. Influence of microwave treatment under a hydrogen or methane atmosphere on the flotability of the macerals in Shenfu coals[J]. Min Sci Technol, 2011,21(6):761-766.  

    10. [10]

      SONG Qiang. Research on flotation separation of low rank coal maceral[D]. Inner Mongolia:Inner Mongolia University Science & Technology, 2015.

    11. [11]

      HONAKER R Q, MOHANTY M K, CRELLING J C. Coal maceral separation using column flotation[J]. Miner Eng, 1996,9(4):449-464. doi: 10.1016/0892-6875(96)00030-1

    12. [12]

      HOWER J C, KUEHN K W, PAREKH B K, PETERS W J. Macerals and microlithotype beneficiation in column flotation at the Powell Mountain Coal Mayflower Preparation Plant, Lee County, Virginia[J]. Fuel Process Technol, 2000,67(1):23-33. doi: 10.1016/S0378-3820(00)00090-4

    13. [13]

      BARRAZA J, PINERES J. A pilot-scale flotation column to produce beneficiated coal fractions having high concentration of vitrinite maceral[J]. Fuel, 2005,84(14/15):1879-1883.  

    14. [14]

      RAJU G B, KHANGAONKAR P R. Electro-flotation of chalcopyrite fines[J]. Int J Miner Process, 1982,9(2):133-143. doi: 10.1016/0301-7516(82)90022-9

    15. [15]

      RAJU G B, KHANGAONKAR P R. Electroflotation of chalcopyrite fines with sodium diethyldithiocarbamate as collector[J]. Int J Miner Process, 1984,13(3):211-221. doi: 10.1016/0301-7516(84)90004-8

    16. [16]

      SARKAR M, DONNE S, EVANS G. Hydrogen bubble flotation of silica[J]. Adv Powder Technol, 2010,21(4):412-418. doi: 10.1016/j.apt.2010.04.005

    17. [17]

      SUN W, MA L, HU Y, DONG Y, ZHANG G. Hydrogen bubble flotation of fine minerals containing calcium[J]. Min Sci Technol, 2011,21(4):591-597.  

    18. [18]

      PABLO C, CARLOS J, FABIOLA M, MANUEL A R, CRISTINA S. The pH as a key parameter in the choice between coagulation and electrocoagulation for the treatment of wastewaters[J]. J Hazard Mater, 2009,163:158-164. doi: 10.1016/j.jhazmat.2008.06.073

    19. [19]

      ONCEL MS, DEMIRBAS A, KOBYA M. A comparative study of chemical precipitation and electrocoagulation for treatment of coal acid drainage wastewater[J]. J Environ Chem Eng, 2013,1(4):989-995. doi: 10.1016/j.jece.2013.08.008

    20. [20]

      VU T P, VOGEL A, KERN F, PLATZ S, MENZEL U, GADOW R. Characteristics of an electrocoagulation-electroflotation process in separating powdered activated carbon from urban wasterwater effluent[J]. Sep Purif Technol, 2014,34:196-203.  

    21. [21]

      LIAKOS T I, LAZARIDIS N K. Melanoisins removal from simulated and real wastewaters by coagulation and electro-flotation[J]. Chem Eng J, 2014,242:269-277. doi: 10.1016/j.cej.2014.01.003

    22. [22]

      GOLZARY A, IMANIAN S, ABDOLI M A, KHODADADI A, KARBASSI A. A cost-effective strategy for marine microalgae separation by electro-coagulation-flotation process aimed at bio-crude oil production:Optimization and evaluation study[J]. Sep Purif Technol, 2015,147:156-165. doi: 10.1016/j.seppur.2015.04.011

    23. [23]

      ZHANG Hong-bo, LI Yong-sheng, NING Ting-ting, ZHU Ying-ying. Experiment of electrochemical desulfurization of coal under acidic conditions[J]. J Heilongjiang Univ Sci Technol, 2014,24(1):58-62.  

    24. [24]

      GONG X Z, WANG M Y, WANG Z. Desulfuration of electrolyzed coal water slurry in HCl system with ionic liquid addition[J]. Fuel Process Technol, 2012,99:6-12. doi: 10.1016/j.fuproc.2012.02.002

    25. [25]

      ZHU Y, LU XI, ZHU H. Research on factors affecting flotation and desulfurization of coal by electrochemical method[J]. J China Univ Min Techno, 2001,11(2):138-141.  

    26. [26]

      ZHU Hong, WANG Ding-zuo, LI Hu-lin, OU Ze-shen. Study on the mechanism of fine coal by electrochemical surface modification[J]. J China Coal Soc, 2000,25(3):307-311.  

    27. [27]

      LIN Juan, ZHAO Wei. Electrochemical reduction of coals and the oxygenic fuctional simulacrums of coals[J]. Electrochem, 2007,13(2):177-182.  

    28. [28]

      DONG Xian-shu, YAO Su-ling, LIU Ai-rong, WANG Zhi-zhong. Settling characteristics of slurry pretreated by eletrochemistry[J]. J China Univ Min Technol, 2010,39(5):753-757.  

    29. [29]

      XU Xin-qian, WANG Zu-ne, XU Jing-qiu, GE Ling-mei. Structural characteristics and differences among lithotypes[J]. J Fuel Chem Technol, 1996,24(5):426-433.  

    30. [30]

      DUAN Xu-qin, WANG Zu-ne, QU Jian-wu. Study on structural property of inertinite and vitrinite of Shenfu coal[J]. Coal Sci Technol, 2004,32(2):19-23.  

    31. [31]

      ZHAO Wei, ZHANG Xiang-qian, ZHOU An-ning, YANG Zhi-yuan. Flotation separation of Shenfu coal macerals and low temperature pyrolysis characteristics of different maceral concentrate[J]. J Fuel Chem Technol, 2014,42(5):527-533.  

    32. [32]

      PAINTER P C, SOCBKOWIAK M, YOUTCHEFFT J. FT-IR study of hydrogen bonding in coal[J]. Fuel, 1987,66(7):973-978. doi: 10.1016/0016-2361(87)90338-3

    33. [33]

      ZHAO W, YANG F S, LI Y G, QU J L, ZHOU A N. The influence of microwave treatment under a hydrogen or methane atmosphere on the flotability of the macerals in Shenfu coals[J]. Min Sci Technol, 2011,21:761-766.  

    34. [34]

      WANG Bao-jun, LI Min, ZHAO Qing-yan, QIN Yu-hong, XIE Ke-chang. Relationship between surface potential and functional groups of coals[J]. J Chem Ind Eng, 2004,55(8):1329-1333.  

  • 加载中
    1. [1]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    2. [2]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    3. [3]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    4. [4]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    5. [5]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    6. [6]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    7. [7]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    8. [8]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    9. [9]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

    10. [10]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    11. [11]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    12. [12]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    13. [13]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    14. [14]

      Yuan Chun Yongmei Liu Fuping Tian Hong Yuan Shu'e Song Wanchun Zhu Yunchao Li Zhongyun Wu Xiaokui Wang Yunshan Bai Li Wang Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Colloidal and Surface Chemical Properties, Molecular Structure and Properties. University Chemistry, 2025, 40(5): 178-188. doi: 10.12461/PKU.DXHX202503053

    15. [15]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    16. [16]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    17. [17]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    18. [18]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    19. [19]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    20. [20]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

Metrics
  • PDF Downloads(1)
  • Abstract views(1160)
  • HTML views(162)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return