Citation: YANG Shu-qian, LIU Yu-juan, LIU Jin-bo, FANG Ming-ming, XIAO Guo-peng, ZHANG Lei, CHEN Lin, YUAN Xing-zhou, ZHANG Jian. Effect of calcination temperature on the catalytic performance of the hydrotalcite derived Ce/Cu/Zn-Al catalysts for hydrogen production via methanol steam reforming[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(12): 1482-1490. shu

Effect of calcination temperature on the catalytic performance of the hydrotalcite derived Ce/Cu/Zn-Al catalysts for hydrogen production via methanol steam reforming

  • Corresponding author: ZHANG Lei, lnpuzhanglei@163.com ZHANG Jian, zhangjian_lnpu@163.com
  • Received Date: 20 August 2018
    Revised Date: 4 November 2018

    Fund Project: the Science Research General Foundation of Liaoning Education Department L2015296The project was supported by the National Natural Science Foundation of China (21376237), the Doctoral Scientific Research Foundation of Liaoning Province (201601322) and the Science Research General Foundation of Liaoning Education Department(L2015296)the National Natural Science Foundation of China 21376237the Doctoral Scientific Research Foundation of Liaoning Province 201601322

Figures(10)

  • ZnAl-LDHs was prepared by in-situ synthesis method on the surface of γ-Al2O3, and then a series Ce/Cu/Zn-Al catalysts were prepared by ordinal wet impregnation method. All the catalysts were characterized by XRD, BET, H2-TPR and XPS to investigate the effects of calcination temperature on the surface structure of Ce/Cu/Zn-Al catalyst and its catalytic performance in methanol steam reforming. The results showed that calcination temperature mainly influenced the specific surface area of copper, surface oxygen vacancy content and the interaction between Cu and Ce. When the calcination temperature is 500℃, the specific surface area of Cu is larger, the content of oxygen vacancy is higher and the interaction between Cu and Ce is stronger. Therefore, the catalytic activity of the catalysts for methanol steam reforming is the best. When the calcination temperature rises to 700℃, the Cu species mainly exist in the form of stable CuAl2O4 spinel, which is not conducive to the reaction of methanol steam reforming, resulting in lower catalytic activity.
  • 加载中
    1. [1]

      RYAN J G, KHALID A A, WILLIAM H G. Thermochemical production of hydrogen from hydrogen sulfide with iodine thermochemical cycles[J]. Int J Hydrogen Energy, 2018,43(29):12939-12947. doi: 10.1016/j.ijhydene.2018.04.217

    2. [2]

      CLAUDE L. From hydrogen production by water electrolysis to its utilization in a PEM fuel cell or in a SO fuel cell:Some considerations on the energy efficiencies[J]. Int J Hydrogen Energy, 2016,41(34):15415-15425. doi: 10.1016/j.ijhydene.2016.04.173

    3. [3]

      HOSSAIN M A, JEWARATNAM J, GANESAN P. Prospect of hydrogen production from oil palm biomass by thermochemical processe-A review[J]. Int J Hydrogen Energy, 2016,41(38):16637-16655. doi: 10.1016/j.ijhydene.2016.07.104

    4. [4]

      SANDRA S, HUGO S, LUCIA B, SOUSA J M, MENDES A. Catalysts for methanol steam reforming-A review[J]. Appl Catal B:Environ, 2010,99(1/2):43-57.  

    5. [5]

      SU Shi-long, ZHANG Lei, ZHANG Yan, LEI Jun-teng, GUI Jian-zhou, LIU Dan, LIU Dao-sheng, PAN Li-wei. Thermodynamic Simulation for Hydrogen Production in the Methanol Steam Reforming System of Kilowatt PEMFC[J]. J Petrochem Univ, 2015,28(2):19-25. doi: 10.3969/j.issn.1006-396X.2015.02.004

    6. [6]

      SANCHES S G, FLORES J H, PAIS DA SILVA M I. Cu/ZnO and Cu/ZnO/ZrO2 catalysts used for methanol steam reforming[J]. Mol Catal, 2018,454:55-62. doi: 10.1016/j.mcat.2018.05.012

    7. [7]

      XU T K, ZOU J, TAO W T, ZHANG S Y, CUI L, ZENG F L, WANG D Z, CAI W J. Co-nanocasting synthesis of Cu based composite oxide and itspromoted catalytic activity for methanol steam reforming[J]. Fuel, 2018,183:238-244.  

    8. [8]

      LI J, ZHANG Q J, LONG X, QI P, LIU Z T, LIU Z W. Hydrogen production for fuel cells via steam reforming of dimethyl ether over commercial Cu/ZnO/Al2O3 and zeolite[J]. Chem Eng J, 2012,187:299-305. doi: 10.1016/j.cej.2012.01.126

    9. [9]

      CHOI Y, FUTAGAMI K, FUTAGAMI K, FUJITANI T, NAKAMURA J. The role of ZnO in Cu/ZnO methanol synthesis catalysts-morphology effect or active site model[J]. Appl Catal A:Gen, 2001,208(1/2):163-167.  

    10. [10]

      XIAO S, ZHANG Y F, GAO P, ZHONG L S, LI X P, ZHANG Z Z, WANG H, WEI W, SUN Y H. Highly efficient Cu-based catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol[J]. Catal Today, 2017,281:327-336. doi: 10.1016/j.cattod.2016.02.004

    11. [11]

      HAMMOUD D, GENNEQUIN C, ABOUKAIS A, AAD E A. Steam reforming of methanol over x% Cu/Zn-Al 400500 based catalysts for production of hydrogen:Preparation by adopting memory effect of hydrotalcite and behavior evaluation[J]. Int J Hydrogen Energy, 2015,40(2):1283-1297. doi: 10.1016/j.ijhydene.2014.09.080

    12. [12]

      HE J P, YANG Z X, ZHANG L, LI Y, PAN L W. Cu supported on ZnAl-LDHs precursor prepared by in-situ synthesis method on γ-Al2O3 as catalytic material with high catalytic activity for methanol steam reforming[J]. Int J Hydrogen Energy, 2017,42(15):9930-9937. doi: 10.1016/j.ijhydene.2017.01.229

    13. [13]

      HE Jian-ping, ZHANG Lei, CHEN Lin, YANG Zhan-xu, TONG Yu-fei. Effect of CeO2 on Cu/Zn-Al catalysts derived from hydrotalcite precursor for methanol steam reforming[J]. Chem J Chin Univ, 2017,38:1822-1828. doi: 10.7503/cjcu20170158

    14. [14]

      YANG Shu-qian, HE Jian-ping, ZHANG Na, SUI Xiao-wei, ZHANG Lei, YANG Zhan-xu. Effect of rare-earth element modification on the performance of Cu/ZnAl catalysts derived from hydrotalcite precursor in methanol steam reforming[J]. J Fuel Chem Technol, 2018,46(2):179-188. doi: 10.3969/j.issn.0253-2409.2018.02.007 

    15. [15]

      YANG Shu-qian, ZHANG Na, HE Jian-ping, ZHANG Lei, WANG Hong-hao, BAI Jin, ZHANG Jian, LIU Dao-sheng, YANG Zhan-xu. Effect of impregnation sequence of Ce on the performance of Cu/Zn-Al catalysts derived from hydrotalcite precursor in methanol steam reforming[J]. J Fuel Chem Technol, 2018,46(4):479-488. doi: 10.3969/j.issn.0253-2409.2018.04.014 

    16. [16]

      LIU Yu-Juan, XU Ji, TONG Yu-fei, ZHANG Na, ZHANG Lei, LIU Dao-sheng, HAN Jiao, ZHANG Cai-shun. Progress in research of the synthesis methods of nanometer ceria[J]. J Liaoning Univ Pet Chem Technol, 2017,37(5):8-12. doi: 10.3969/j.issn.1672-6952.2017.05.002

    17. [17]

      ZHANG Qiu-lin, XU Hai-di, LI Wei, LIN Tao, GONG Mao-chun, CHEN Yao-qiang. Influence of calcination temperature on performance of monolith catalyst MnO2-CeO2/Zr0.25Ti0.25Al0.5O1.75 for selective catalytic reduction of NO by NH3 at low temperature[J]. Chin J Catal, 2010,31(2):229-235.  

    18. [18]

      BIALAS A, KUSTROWSKI P, DUDEK B, PIWOWARSKA Z, WACH A, MICHALIK M, KOZAK M. Copper-aluminum oxide catalysts for total oxidation of toluene synthesized by thermal decomposition of co-precipitated precursors[J]. Thermochim Acta, 2014,590:191-197. doi: 10.1016/j.tca.2014.06.027

    19. [19]

      FANG Shu-nong, JIANG Ming, FU Yi-lu, LIN Pei-yan, QIAO Shan, XIE Ya-ning. The effect of different calcination temperature on the structure of Cu/γ-Al2O3 catalysts[J]. Acta Phys Chim Sin, 1994,10(7):623-627. doi: 10.3866/PKU.WHXB19940709

    20. [20]

      SUN Jiao, REN Guo-qing, HUANG Yu-hui, CHEN Xiao-rong, MEI Hua. Effect of calcination temperature on the catalytic performance of CuMgAl catalysts for furfural gas phase selective hydrogenation to furfuryl alcohol[J]. J Fuel Chem Technol, 2017,45(1):43-47. doi: 10.3969/j.issn.0253-2409.2017.01.007 

    21. [21]

      BASAG S, PIWOWARSKA Z, KOWALCZYK A, WEGRZYN A, BARAN R, GIL B, MICHALIK M, CHMIELARZ L. Cu-Mg-Al hydrotalcite-like materials as precursors of effective catalysts for selective oxidation of ammonia to dinitrogen-The influence of Mg/Al ratio and calcination temperature[J]. Appl Clay Sci, 2016,129:122-130. doi: 10.1016/j.clay.2016.05.019

    22. [22]

      ZHANG L, PAN L W, NI C J, SUN T J, ZHAO S S, WANG S D, WANG A J, HU Y K. CeO2-ZrO2-promoted CuO/ZnO catalyst for methanol steam reforming[J]. Int J Hydrogen Energy, 2013,38(11):4397-4406. doi: 10.1016/j.ijhydene.2013.01.053

    23. [23]

      GUO X M, MAO D S, LU G Z, WANG S, WU G S. CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared via a route of solid-state reaction[J]. Catal Commun, 2011,12(12):1095-1098. doi: 10.1016/j.catcom.2011.03.033

    24. [24]

      SHIM J O, NA H S, JHA A, JANG W J, JEONG D W, NAH I W, JEON B H, ROH H S. Effect of preparation method on the oxygen vacancy concentration of CeO2-promoted Cu/γ-Al2O3 catalysts for HTS reactions[J]. Chem Eng J, 2016,306:908-915. doi: 10.1016/j.cej.2016.08.030

    25. [25]

      BYOUNG K K, DAE S P, YANG S Y, JONGHEOP Y. Preparation and characterization of nanocrystalline CuAl2O4 spinel catalysts by sol-gel method for the hydrogenolysis of glycerol[J]. Catal Commun, 2012,24:90-95. doi: 10.1016/j.catcom.2012.03.029

    26. [26]

      QIN Fa-jie, LIU Ya-jie, QING Shao-jun, HOU Xiao-ning, GAO Zhi-xian. Cu-Al spinel as a sustained release catalyst for H2 production from methanol steam reforming:Effects of different copper sources[J]. J Fuel Chem Technol, 2017,45(12):1481-1488. doi: 10.3969/j.issn.0253-2409.2017.12.010 

    27. [27]

      WANG J, ZHONG L P, LU J C, CHEN R, LEI Y Q, CHEN K Z, HAN C H, HE S F, WAN G P, LUO Y M. A solvent-free method to rapidly synthesize CuO-CeO2 catalysts to enhance their CO preferential oxidation:Effects of Cu loading and calcination temperature[J]. Mol Catal, 2017,443:241-252. doi: 10.1016/j.mcat.2017.10.012

    28. [28]

      LUO M F, FANG P, HE M, XIE Y L. In situ XRD, Raman, and TPR studies of CuO/Al2O3 catalysts for CO oxidation[J]. J Mol Catal A:Chem, 2005,239(1/2):243-248.  

    29. [29]

      ZHANG Lei, LEI Jun-teng, TIAN Yuan, HU Xin, BAI Jin, LIU Dan, YANG Yi, PAN Li-wei. Effect of precursor and precipitant concentration on the performance of CuO/ZnO/CeO2-ZrO2 catalyst for methanol steam reforming[J]. J Fuel Chem Technol, 2015,43(11):1366-1374. doi: 10.3969/j.issn.0253-2409.2015.11.012 

    30. [30]

      TANG D M, LIU G, LI F, TAN J, LIU C, LU G Q, CHENG H M. Synthesis and photoelectrochemical property of Urchin-like Zn/ZnO core-shell structures[J]. J Phys Chem C, 2009,113(25):11035-11040. doi: 10.1021/jp8107254

    31. [31]

      SEO Y S, CHOI T Y, HA J, JEONG D Y, LEE S Y, KIM D. Enhancement of stability of aqueous suspension of alumina nanoparticles by femtosecond laser irradiation[J]. J Appl Phys, 2015,118114906. doi: 10.1063/1.4931373

    32. [32]

      WANG C, CHENG Q P, WANG X L, MA K, BAI X Q, TAN S R, TIAN Y, TONG D, ZHENG L R, ZHANG J, LI X G. Enhanced catalytic performance for CO preferential oxidation over CuO catalysts supported on highly defective CeO2 nanocrystals[J]. Appl Surf Sci, 2017,422:932-943. doi: 10.1016/j.apsusc.2017.06.017

    33. [33]

      ZHANG Guo-qiang, GUO Tian-yu, LI Zhong. Effect of calcination temperature on catalytic performance of CuCe/Ac catalysts for oxidative carbonylation of methanol[J]. J Fuel Chem Technol, 2016, 44(6):674-679. 

    34. [34]

      FAN J, WU X D, WU X D, LIANG Q, RAN R, WENG D. Thermal ageing of Pt on low-surface-area CeO2-ZrO2-La2O3 mixed oxides:Effect on the OSC performance[J]. Appl Catal B:Environ, 2008,81(1/2):38-48.  

    35. [35]

      LIOTTA L F, CARLO G D, PANTALEO G, VENEZIA A M, DEGANELLO G. Co3O4/CeO2 composite oxides for methane emissions abatement:Relationship between Co3O4-CeO2 interaction and catalytic activity[J]. Appl Catal B:Environ, 2006,66(3/4):217-227.

    36. [36]

      LIANG F L, YU Y, ZHOU W, XU X Y, ZHU Z H. Highly defective CeO2 as a promoter for efficient and stable water oxidation[J]. J Mater Chem A, 2015,3(2):634-640. doi: 10.1039/C4TA05770H

    37. [37]

      LIN S S, CHEN C L, CHANG D J, CHEN C C. Catalytic wet air oxidation of phenol by various CeO2 catalysts[J]. Water Res, 2002,36(12):3009-3014. doi: 10.1016/S0043-1354(01)00539-5

  • 加载中
    1. [1]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    2. [2]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    3. [3]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    4. [4]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    5. [5]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    6. [6]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    7. [7]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    8. [8]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    9. [9]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    10. [10]

      Wanchun Zhu Yongmei Liu Li Wang Yunshan Bai Shu'e Song Xiaokui Wang Zhongyun Wu Hong Yuan Yunchao Li Fuping Tian Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Temperature. University Chemistry, 2025, 40(5): 128-136. doi: 10.12461/PKU.DXHX202503028

    11. [11]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    12. [12]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    13. [13]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    14. [14]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    15. [15]

      Mei Yan Rida Feng Yerdos·Tohtarkhan Biao Long Li Zhou Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103

    16. [16]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    17. [17]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    18. [18]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    19. [19]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    20. [20]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

Metrics
  • PDF Downloads(11)
  • Abstract views(855)
  • HTML views(105)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return