Citation: ZHANG E-song, YU Jie, WANG Le-le, WANG Ben, SUN Lu-shi. Deactivation and regeneration of commercial SCR catalysts used in coal fired power plant[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(10): 1249-1256. shu

Deactivation and regeneration of commercial SCR catalysts used in coal fired power plant

  • Corresponding author: YU Jie, yujie@hust.edu.cn
  • Received Date: 12 June 2018
    Revised Date: 23 July 2018

Figures(11)

  • The activity of SCR catalyst used in a coal-fired power plant for 24000 h was tested. With the help of XRD, BET, XRF, FT-IR and XPS, it is found that the catalyst has some problems such as micropore and mesopore plugging and the oxidation of active substances, which leads to the deactivation of the catalyst. Water washing and H2SO4 washing were used to remove plugs in the pores of the catalyst. The result shows that water washing can resume part of vanadium species and H2SO4 washing can renew the active sites on the surface of catalyst and uniformly load the sulfur species which can increase the acidity of active site. The SO2 sulphation treatment was performed on the catalyst after water washing. It is indicated that the Brønsted acid and the Lewis acid sites have higher strength and the Lewis acid has higher density than that by H2SO4 washing. After the regeneration treatment, H2SO4 washed catalyst activity is restored to the level of fresh catalyst above 250 ℃. And the activity of SO2 sulphation catalyst at 450 ℃ reaches 104.6% of the fresh catalyst activity at 380 ℃.
  • 加载中
    1. [1]

      Ministry of environmental protection of People's Republic of China. China Environmental Statistics Annual Report. 2015[M]. China Environmental Press, 2016.

    2. [2]

      XIE X, LU J, HUMS E, HUANG Q, LU Z. Study on the deactivation of V2O5-WO3/TiO2 selective catalytic reduction catalysts through transient kinetics[J]. Energy Fuels, 2015,29(6):3890-3896. doi: 10.1021/acs.energyfuels.5b01034

    3. [3]

      TANG Hao, LU Qiang, YANG Jiang-yi, LI Hui, LI Wen-yan, YANG Yong-ping. Research on recycling and characterization analysis of the waste SCR catalyst[J]. J Fuel Chem Technol, 2018,46(2):233-242. doi: 10.3969/j.issn.0253-2409.2018.02.014

    4. [4]

      WU Wei-hong, WU Hua, LUO Jia, JIANG Xiao. Research progress on the regeneration of SCR catalysts for flue gas denitrification[J]. Appl Chem Ind, 2013,42(7):1304-1307.  

    5. [5]

      YU Yan-ke, HE Chi, CHEN Jin-sheng, MENG Xiao-ran. Deactivation mechanism of de NOx catalyst (V2O5-WO3/TiO2) used in coal fired power plant[J]. J Fuel Chem Technol, 2012,40(11):1359-1365. doi: 10.3969/j.issn.0253-2409.2012.11.013

    6. [6]

      LEE J B, KIM S K, DONG W K, KIM K H, CHUN S N, HUR K B, SANG M J. Effect of H2SO4 concentration in washing solution on regeneration of commercial selective catalytic reduction catalyst[J]. Korean J Chem Eng, 2012,29(2):270-276. doi: 10.1007/s11814-011-0156-8

    7. [7]

      LI Ru-bing, WU Yu-feng, ZHANG Qi-jun, CHEN Xi, LIU Bin. A comprehensive review of the regeneration and recovery of commercial SCR catalyst (V2O5-WO3/TiO2)[J]. Mod Chem Ind, 2017(3):29-33.  

    8. [8]

      LI J, TANG X, GAO F, YI H, ZHAO S. Studies on the calcium poisoning and regeneration of commercial De-NOx SCR catalyst[J]. Chem Pap, 2017,71(10):1921-1928. doi: 10.1007/s11696-017-0186-8

    9. [9]

      YU Xiao-wei, ZHOU Yu, LIU Shuai, SONG Chao. Reason analysis for deactivation of commercial SCR de-NOx catalyst and its regeneration[J]. Therm Power Gener, 2014,43(2):109-113. doi: 10.3969/j.issn.1002-3364.2014.02.109

    10. [10]

      GAO F, TANG X, YI H, ZHAO S, ZHANG T, LI D, MA D. The poisoning and regeneration effect of alkali metals deposed over commercial V2O5-WO3/TiO2 catalysts on SCR of NO by NH3[J]. Sci Bull, 2014,59(31)3966. doi: 10.1007/s11434-014-0496-y

    11. [11]

      GAO Feng-yu, TANG Xiao-long, YI Hong-hong, ZHAO Shun-zheng, LI Dong, MA Ding, ZHANG Tong-tong. Sodium poisoning mechanism and regeneration of commercial De-NOx SCR catalysts[J]. J Cent South Univ Technol, 2015,46(6):2382-2390.  

    12. [12]

      TANABE K, MISONO M, ONO Y, HATTORI H. New solid acids and bases:Their catalytic properties[J]. Stud Surf Sci Catal, 1989,51:1-365. doi: 10.1016/S0167-2991(08)61044-7

    13. [13]

      LIETTI L, RAMIS G, BERTI F, TOLEDO G, ROBBA D, BUSCA G, FORZATTI P. Chemical, structural and mechanistic aspects on NOx SCR over commercial and model oxide catalysts[J]. Catal Today, 1998,42(1/2):101-116.  

    14. [14]

      KHODAYARI R, ODENBRAND C U I. Regeneration of commercial TiO2-V2O5-WO3 SCR catalysts used in bio fuel plants[J]. Appl Catal B:Environ, 2001,30(1/2):87-99.

    15. [15]

      SHEN Jia-quan, ZHANG Jian-hua, ZOU Yi-jin, YU Yan-ke, CHEN Jin-sheng, WANG Jin-xiu, JIANG Chang-shui. Mechanism of deactivation and regeneration for corrugated type SCR catalysts[J]. Electron Power Environ Protect, 2016(3):8-11. doi: 10.3969/j.issn.1674-8069.2016.03.003

    16. [16]

      ZHANG Pei, WU Si-ming, FANG Tuo-tuo, CHEN Yan-ping, SHI Yao, HE Yi. Deactivation and regeneration of commercial SCR catalysts used in a 660 MW coal-fired power plant[J]. J Chem Eng Chin Univ, 2017,31(5):1186-1192. doi: 10.3969/j.issn.1003-9015.2017.05.023

    17. [17]

      NICOSIA D, CZEKAJ I, KRÖCHER O. Chemical deactivation of V2O5/WO3-TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils and urea solution:Part Ⅱ. Characterization study of the effect of alkali and alkaline earth metals[J]. Appl Catal B:Environ, 2008,77(3/4):228-236.

    18. [18]

      ZHANG Dao-jun, MA Zi-ran, SUN Qi, XU Wen-qiang, LI Yong-long, WANG Bao-dong, ZHU Tao, LIN De-hai, JI Guang-hui, MA Jing. Formation mechanism, effects and prevention of NH4HSO4 formed on the surface of V2O5 based catalysts[J]. Chem Ind Eng Prog, 2018(7):2635-2643.  

    19. [19]

      KLING Å, ANDERSSON C, MYRINGER Å, ESKILSSON D, JÄRÅS S G. Alkali deactivation of high-dust SCR catalysts used for NOx reduction exposed to flue gas from 100 MW-scale biofuel and peat fired boilers:Influence of flue gas composition[J]. Appl Catal B:Environ, 2007,69(3/4):240-251.

    20. [20]

      LIU F, ASAKURA K, HE H, SHAN W, SHI X, ZHANG C. Influence of sulfation on iron titanate catalyst for the selective catalytic reduction of NOx with NH3[J]. Appl Catal B:Environ, 2011,103(3):369-377.  

    21. [21]

      SHANG X, HU G, CHI H, ZHAO J, ZHANG F, XU Y, ZHANG Y, LI J, CHEN J. Regeneration of full-scale commercial honeycomb monolith catalyst (V2O5-WO3/TiO2) used in coal-fired power plant[J]. J Ind Eng Chem, 2012,18(1):513-519. doi: 10.1016/j.jiec.2011.11.070

    22. [22]

      CHEN L, LI J, GE M. Promotional effect of Ce-doped V2O5-WO3/TiO2 with low vanadium loadings for selective catalytic reduction of NOx by NH3[J]. J Phys Chem C, 2009,113(50):21177-21184. doi: 10.1021/jp907109e

    23. [23]

      DUAN Rui-rui. Influence on modulation of the V4+/5+ ratio and rate of V4+ and V5+ redox and SCR DeNOx activity[D]. Harbin: Engineering University, 2014.

    24. [24]

      CHENG Hua. Study of the deactivation causes and the regeneration methods for commercial V2O5-WO3/TiO2 SCR catalyst[D]. Guangzhou: South China University of Technology, 2013.

    25. [25]

      MA Jian-rong, HUANG Zhang-gen, LIU Zhen-yu, GUO Shi-jie. Effect of regeneration method on activity for simultaneous removal of SO2 and nO over V2O5/AC catalyst-sorbent[J]. Chin J Catal, 2005,26(6):463-469. doi: 10.3321/j.issn:0253-9837.2005.06.009

    26. [26]

      JIANG Ye, GAO Xiang, WU Wei-hong, ZHANG Yong-xin. Review of the deactivation of selective catalytic reduction DeNOx catalysts[J]. Proc CSEE, 2013,33(14):18-31.  

    27. [27]

      PENG Y, LI J, SHI W, XU J, HAO J. Design strategies for development of SCR catalyst:Improvement of alkali poisoning resistance and novel regeneration method[J]. Environ Sci Technol, 2012,46(22)12623. doi: 10.1021/es302857a

    28. [28]

      BUSCA G, LIETTI L, RAMIS G, BERTI F. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts:A review[J]. Appl Catal B:Environ, 1998,18(1/2):1-36.  

    29. [29]

      KHODAYARI R, ODENBRAND C U I. Regeneration of commercial SCR catalysts by washing and sulphation:Effect of sulphate groups on the activity[J]. Appl Catal B:Environ, 2001,33(4):277-291. doi: 10.1016/S0926-3373(01)00193-X

  • 加载中
    1. [1]

      Hengyi ZHULiyun JUHaoyue ZHANGJiaxin DUYutong XIELi SONGYachao JINMingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358

    2. [2]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    3. [3]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    4. [4]

      Jianan Zhang Mengzhen Xu Jiamin Liu Yufei He . 面向“双碳”目标的脱氯吸附剂开发研究型综合实验设计. University Chemistry, 2025, 40(6): 248-255. doi: 10.12461/PKU.DXHX202408068

    5. [5]

      Xingyu Liao Xiangming Yi Kin Shing Chan . 追凶之路上的怪客——硫化氢. University Chemistry, 2025, 40(6): 172-176. doi: 10.12461/PKU.DXHX202408039

    6. [6]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    7. [7]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    8. [8]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    9. [9]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    10. [10]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    13. [13]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    14. [14]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    15. [15]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    16. [16]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    17. [17]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    18. [18]

      Yushan CaiFang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048

    19. [19]

      Juntao YanLiang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-0. doi: 10.3866/PKU.WHXB202312024

    20. [20]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

Metrics
  • PDF Downloads(8)
  • Abstract views(888)
  • HTML views(64)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return