Citation: Kanyu Xun, Yue Sun, Yue Zhang, Liping Qiu. Functional Nucleic Acid-Based Fluorescence Cell Imaging[J]. Chemistry, ;2021, 84(2): 98-107. shu

Functional Nucleic Acid-Based Fluorescence Cell Imaging

  • Corresponding author: Liping Qiu, qiuliping@hnu.edu.cn
  • Received Date: 11 September 2020
    Accepted Date: 4 November 2020

Figures(8)

  • Cell is the structural and functional unit of organisms. Studying the spatiotemporal distribution and activity of specific biomolecules in living cells would provide valuable information in understanding various biological processes. Fluorescence imaging technology has showed great potential for live-cell imaging. On the other hand, development of high-performance fluorescent probes has become a major bottleneck in this field. Functional nucleic acids (FNAs) are a class of oligonucleotides with specific chemical and/or biological functions, including natural ribozymes and riboswitches, as well as aptamers and DNAzymes screened through the SELEX (systematic evolution of ligands by exponential enrichment) technique. Taking advantages of simple synthesis, low immunogenicity, small size, high chemical stability, easy modification, FNAs have received extensive attention in the fields of bio-analysis and bio-imaging. This review summarizes the recent applications of FNA in fluorescence cell imaging, and points out the challenges and future prospects in this field.
  • 加载中
    1. [1]

      Dean K M, Qin Y, Palmer A E. BBA-Mol. Cell Res., 2012, 1823(9): 1406~1415.

    2. [2]

      Oddershede L B. Nat. Chem. Biol., 2012, 8(11): 879~886.

    3. [3]

      Lippincott S J, Snapp E, Kenworthy A. Nat. Rev. Mol. Cell. Biol., 2001, 2(6): 444~456.

    4. [4]

      Dirks R W, Tanke H J. Biotechniques, 2006, 40(4): 489~496.

    5. [5]

      Mahmood T, Yang P C. North Am. J. Med. Sci., 2012, 4(9): 429~434.

    6. [6]

      Deepak S A, Kottapalli K R, Rakwal R, et al. Curr. Genomics, 2007, 8(4): 234~251.

    7. [7]

      Cui C, Shu W, Li P. Front. Cell Dev. Biol., 2016, 4: 89.

    8. [8]

      Liu J W, Cao Z H, Lu Y. Chem. Rev., 2009, 109: 1948~1998.

    9. [9]

      Ellington A D, Szostak J W. Nature, 1990, 346: 818~822.

    10. [10]

      Tuerk C, Gold L. Science, 1990, 249(4968): 505~510.

    11. [11]

      Ueyama H, Takagi M, Takenaka S. J. Am. Chem. Soc., 2002, 124(48): 14286~14287.

    12. [12]

      Baker B R, Lai R Y, Wood M S, et al. J. Am. Chem. Soc., 2006, 128(10): 3138~3139.

    13. [13]

      Liu L, Stepanian L, Dubins D N, et al. J. Phys. Chem. B, 2018, 122(31): 7647~7653.

    14. [14]

      Williams K P, Liu X H, Schumacher T N M, et al. PNAS, 1997, 94(21): 11285~11290.

    15. [15]

      Beatty-Desana J W, Hoggard M J, Cooledge J W. Nature, 1975, 255(5505): 242~243.

    16. [16]

      Wang C, Zhang M, Yang G, et al. J. Biotechnol., 2003, 102(1): 15~22.

    17. [17]

      Shangguan D H, Li Y, Tang Z W, et al. PNAS, 2006, 103(32): 11838~11843.

    18. [18]

      Wu X Q, Liu H L, Han D M, et al. J. Am. Chem. Soc., 2019, 141(27): 10760~10769.

    19. [19]

      Arnold S, Pampalakis G, Kantiotou K, et al. Biol. Chem., 2012, 393(5): 343~353.

    20. [20]

      Huang C J, Lin H I, Shiesh S C, et al. Biosens. Bioelectron., 2010, 25(7): 1761~1766.

    21. [21]

      Tan W H, Donovan M J, Jiang J H. Chem Rev., 2013, 113(4): 2842~2862.

    22. [22]

      Breaker R R, Joyce G F. Chem. Biol., 1994, 1(4): 223~229.

    23. [23]

      Santoro S W, Joyce G F, Sakthivel K, et al. J. Am. Chem. Soc., 2000, 122(11): 2433~2439.

    24. [24]

      Purtha W E, Coppins R L, Smalley M K, et al. J. Am. Chem. Soc., 2005, 127(38): 13124~13125.

    25. [25]

      Li Y, Breaker R R. PNAS, 1999, 96(6): 2746~2751.

    26. [26]

      Shi H, He X, Wang K, et al. PNAS, 2011, 108(10): 3900~3905.

    27. [27]

      Shi P, Wang X, Davis B, et al. Angew. Chem. Int. Ed., 2020, 59(29): 11892~11897.

    28. [28]

      Kacherovsky N, Cardle I I, Cheng E L, et al. Nat. Biomed. Eng., 2019, 3(10): 783~795.

    29. [29]

      You M X, Peng L, Shao N, et al. J. Am. Chem. Soc., 2014, 136(4): 1256~1259.

    30. [30]

      You M X, Zhu G Z, Chen T, et al. J. Am. Chem. Soc., 2015, 137(2): 667~674.

    31. [31]

      Chang X, Zhang C, Lv C, et al. J. Am. Chem. Soc., 2019, 141(32): 12738~12743.

    32. [32]

      Biju V. Chem. Soc. Rev., 2014, 43(3): 744~764.

    33. [33]

      Zheng D, Seferos D S, Giljohann D A, et al. Nano Lett. 2009, 9(9): 3258~3261.

    34. [34]

      Chen T T, Tian X, Liu C L, et al. J. Am. Chem. Soc., 2015, 137(2): 982~989.

    35. [35]

      He L, Lu D Q, Liang H, et al. ACS Nano, 2017, 11(4): 4060~4066.

    36. [36]

      Zhong L, Cai S, Huang Y, et al. Anal. Chem., 2018, 90(20): 12059~12066.

    37. [37]

      Zheng X F, Peng R Z, Jiang X, et al. Anal. Chem., 2017, 89(20): 10941~10947.

    38. [38]

      Qiu L P, Wu C C, You M X, et al. J. Am. Chem. Soc., 2013, 135(35): 12952~12955.

    39. [39]

      Ren K, Liu Y, Wu J, et al. Nat. Commun., 2016, 7: 13580.

    40. [40]

      De Souza N. Nat. Methods, 2012, 7: 35.

    41. [41]

      Jeremy S P, Karen W, Samie R. Science, 2011, 333(6042): 642~646.

    42. [42]

      Ying Z M, Wu Z, Tu B, et al. J. Am. Chem. Soc., 2017, 139(29): 9779~9782.

    43. [43]

      Yu Q, Shi J, Mudiyanselage A P K K K, et al. Chem. Commun., 2019, 55(5): 707~710.

    44. [44]

      Deng R, Tang L, Tian Q, et al. Angew. Chem. Int. Ed., 2014, 53(9): 2389~2393.

    45. [45]

      He L, Lu D Q, Liang H, et al. J. Am. Chem. Soc., 2018, 140(1): 258~263.

    46. [46]

      Zhao J, Chu H, Zhao Y, et al. J. Am. Chem. Soc., 2019, 141(17): 7056~7062.

    47. [47]

      Xing X J, Li J, Qiu L P, et al. Chem. Commun., 2020, 56(21): 3131~3134.

    48. [48]

      Zhao W, Schafer S, Choi J, et al. Nat. Nanotechnol., 2011, 6(8): 524~531.

    49. [49]

      Tokunaga T, Namiki S, Yamada K, et al. J. Am. Chem. Soc., 2012, 134(23): 9561~9564.

    50. [50]

      Qiu L P, Zhang T, Jiang J H, et al. J. Am. Chem. Soc., 2014, 136(38): 13090~13093.

    51. [51]

      Qiu L P, Wimmers F, Weiden J, et al. Chem. Commun., 2017, 53(57): 8066~8069.

    52. [52]

      Li J, Xun K Y, Pei K, et al. J. Am. Chem. Soc., 2019, 141(45): 18013~18020.

    53. [53]

      Jani M S, Zou J, Veetil A T, et al. Nat. Chem. Biol., 2020, (16): 660~666.

    54. [54]

      Modi S, Goswami D, Gupta G D, et al. Nat. Nanotechnol., 2009, (4): 325~330.

    55. [55]

      Saha S, Prakash V, Halder S, et al. Nat. Nanotechnol., 2015, (10): 645~651.

    56. [56]

      Qiu L P, Chen T, Ocsoy I, et al. Nano Lett., 2015, 15(1): 457~463.

    57. [57]

      Xie S T, Du Y L, Zhang Y, et al. Nat. Commun., 2020, 11(1): 1347.

    58. [58]

      Wang L, Bing T, Liu Y, et al. J. Am. Chem. Soc., 2018, 140(51): 18066~18073.

    59. [59]

      Zhang N, Bing T, Shen L, et al. Angew. Chem. Int. Ed., 2016, 55(12): 3914~3918.

    60. [60]

      Gutsaeva D, Parkerson J B, Yerigenahally S, et al. Blood, 2011, 117(2): 727~735.

    61. [61]

      Santulli-Marotto S, Nair S K, Rusconi C, et al. Cancer Res., 2003, 63(21): 7483~7489.

    62. [62]

      Prodeus A, Abdul-Wahid A, Fischer N W, et al. Mol. Ther-Nucl Acids, 2015, 4: e237.

    63. [63]

      Dollins C M, Nair S, Boczkowski D, et al. Chem. Biol., 2008, 15(7): 675~682.

    64. [64]

      Parekh P, Tang Z, Turner P C, et al. Anal. Chem., 2010, 82(20): 8642~8649.

    65. [65]

      Sefah K, Meng L, Lopez-Colon D, et al. PLoS One, 2010, 5(12): e14269~e14279.

    66. [66]

      Cui L, Peng R, Fu T, et al. Anal. Chem., 2016, 88(3): 1850~1855.

    67. [67]

      Chen K, Huang Q, Fu T, et al. Anal. Chem., 2020, 92(11) 7404~7408.

    68. [68]

      Sharma S, Zajac M, Krishnan Y. ChemBioChem, 2020, 21(1-2): 157~162.

    69. [69]

      Shen L, Bing T, Zhang N, et al. ACS Sensors, 2019, 4(6): 1612~1618.

    70. [70]

      Schultze P, Macaya R F, Feigon J. J. Mol. Biol., 1994, 235(5): 1532~1547.

    71. [71]

      Ng W M, Shima D T, Calias P, et al. Nat. Rev. Drug Discov., 2006, 5(2): 123~132.

  • 加载中
    1. [1]

      Pengli GUANRenhu BAIXiuling SUNBin LIU . Trianiline-derived aggregation-induced emission luminogen probe for lipase detection and cell imaging. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1817-1826. doi: 10.11862/CJIC.20250058

    2. [2]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    3. [3]

      Yuting DUJing YUANPeiyao DENG . Synthesis and application of a fluorescent probe for the detection of reduced glutathione. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461

    4. [4]

      Qiang HUZhiqi CHENZhong CHENXu WANGWeina WU . Pyridinium-chalcone-based ClO- fluorescent probe: Preparation and biological imaging applications. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1789-1795. doi: 10.11862/CJIC.20250086

    5. [5]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    6. [6]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    7. [7]

      Yingpeng ZHANGXingxing LIYunshang YANGZhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064

    8. [8]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    9. [9]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    10. [10]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    11. [11]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    12. [12]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

    13. [13]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    14. [14]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    15. [15]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    16. [16]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    17. [17]

      Wei GAOMeiqi SONGXuan RENJianliang BAIJing SUJianlong MAZhijun WANG . A self-calibrating fluorescent probe for the selective detection and bioimaging of HClO. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1173-1182. doi: 10.11862/CJIC.20250112

    18. [18]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    19. [19]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    20. [20]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

Metrics
  • PDF Downloads(29)
  • Abstract views(1640)
  • HTML views(586)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return