Citation: DAI Cai-sheng, LIU Xue-peng, DAI Jin-ze, MA Song-jiang. Preparation and rheological property of the char-water slurry based on co-pyrolysis of sawdust and lignite[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(7): 784-791. shu

Preparation and rheological property of the char-water slurry based on co-pyrolysis of sawdust and lignite

  • Corresponding author: LIU Xue-peng, 502006383@qq.com
  • Received Date: 20 January 2016
    Revised Date: 18 April 2016

    Fund Project: Scientific Innovation Program of Graduates in Hunan Province CX2014B419The project was supported by the National Natural Science Foundation of China 51478182International S & T Cooperation Program of China 2013DFG60060

Figures(10)

  • An integrated experimental apparatus for pyrolysis/co-pyrolysis was employed to carry out the upgrading process of sawdust, Yunnan lignite, and their blends. The slurry-ability of the upgraded char was investigated. The results show that the slurry-ability of sawdust and Yunnan lignite is significantly improved via pyrolysis process. Bio-char and semi-coke were prepared at 500 ℃ holding 1.5 h. The solid loadings of the resulting slurry fuels derived from sawdust and lignite were enhanced from 29.21% and 54.63% to 38.57% and 60.19%, respectively. Under the same pyrolysis conditions, the slurry-ability of the char prepared from co-pyrolysis of sawdust and Yunnan lignite is apparently superior to that of the corresponding bio-char/coal char mixture with the same original mass ratio of feedstock. The prepared char-water slurries generally display pseudo-plastic behavior, i.e., the shear press decreases with increasing shear rate. When the mass ratio of sawdust exceeds 50%, the rheological property of char-water slurry tend to be shear thickening, exhibiting strong dilatant behavior at low shear rate, which is similar to the rheological property of biochar-water slurry. The desirable slurry-ability of the char produced from co-pyrolysis could be attributed to the synergistic effect of biomass and coal, which is likely to improve aromaticity of the resulting hybrid char.
  • 加载中
    1. [1]

      WANG Jian-he. Review on research and utilization of sawdust[J]. Guangdong Forestry Sci Technol, 1991(3):23-27.  

    2. [2]

      LÜ You-jun, GUO Lie-jin, HAO Xiao-hong, JI Cheng-meng. Influence of main paramters on wood sawdust gasification in supercritical water[J]. J Chem Ind Eng (China), 2004,55(12):2060-2066.  

    3. [3]

      HUBEr G W, SARA I, AVELINO C. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering[J]. Chem Rev, 2006,106(9):4044-98. doi: 10.1021/cr068360d

    4. [4]

      WU Guo-qing. The method to raise pigs with sawdust[J]. New Rural Tech, 2014(6):25-26.  

    5. [5]

      HE Chen-qing, WU Yun-he. Study of production of high efficiency protein feed by using biotic matters[J]. Biotechnol, 1993,3(3):33-36.  

    6. [6]

      QIAN Yong, WU Lei, WANG Jian-jun, ZHUANG Jun-tao. Performance of NaOH-modified larch sawdust adsorbing reactive dyes[J]. J Ecol Rural Environ, 2012,28(4):445-450.  

    7. [7]

      ZHOU Zhi-jun, LI Xiang, ZHOU Jun-hu, LIU Jian-zhong, CEN Ke-fa. Evaluation of surfactants used in biomass coal-water slurries[J]. J Chin Coal Soc, 2012,37(1):147-153.  

    8. [8]

      DENG Hui. The study of biomass coal water slurry[D]. Fuzhou: Fuzhou University, 2010.

    9. [9]

      PENG Qian. Preparation, combustion and gasification of biomass coal water slurry[D]. Hangzhou: Zhejiang University, 2011.

    10. [10]

      LIU M, DUAN Y, MA X. Effect on surface chemistry and structure of sludge particles on their co-slurrying ability with petroleum coke[J]. Int J Chem React Eng, 2014,12(1):429-439.  

    11. [11]

      CHEN R, WILSON M, LEONG Y K, BRYANT P, YANG H, ZHANG D K. Preparation and rheology of biochar, lignite char and coal slurry fuels[J]. Fuel, 2011,90(4):1689-1695. doi: 10.1016/j.fuel.2010.10.041

    12. [12]

      WEI H, CHAN S P, NORBECK J M. Rheological study of comingled biomass and coal slurries with hydrothermal pretreatment[J]. Energy Fuels, 2009,23(1):4763-4767.  

    13. [13]

      YANG Bo-li, GONG Kai-feng, ZHOU Jian-hui, LIU Hai-feng, WANG Fu-chen, YU Zun-hong. Slurryability of lignite and petroleum coke mixture[J]. J Fuel Chem Technol, 2008,23(4):391-396.  

    14. [14]

      FARR R S, MELROSE J R, BALL R C. Kinetic theory of jamming in hard-sphere startup flows[J]. Phys Rev E: Stat Phys, Plasmas Fluids, Relat Interdiscip Top, 1997,55(6):7203-7211.  

    15. [15]

      YANG Xiao-qin, LIU Xue-jing, LIU Hai-xiong, YUE Xiao-ming, CAO Jing-pei, ZHOU Min. Synergy effect in co-gasification of lignite and char of pine sawdust[J]. Acta Phys Chim Sin, 2014,30(10):1794-1800.  

  • 加载中
    1. [1]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    2. [2]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    3. [3]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    6. [6]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    7. [7]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    8. [8]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    9. [9]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    10. [10]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    11. [11]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    12. [12]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    13. [13]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    14. [14]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    15. [15]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    16. [16]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    17. [17]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    18. [18]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    19. [19]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    20. [20]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

Metrics
  • PDF Downloads(0)
  • Abstract views(1470)
  • HTML views(101)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return