Citation: WANG Zhi-gang, BAI Jin, KONG Ling-xue, LI Huai-zhu, BAI Zong-qing, LI Wen. Regulation of high temperature flow properties of ash containing V and Ni[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(10): 1164-1171. shu

Regulation of high temperature flow properties of ash containing V and Ni

  • Corresponding author: BAI Jin, stone@sxicc.ac.cn
  • Received Date: 10 June 2017
    Revised Date: 17 August 2017

    Fund Project: the National Natural Science Foundation of China 21406254the National Natural Science Foundation of China 21706027The project was supported by the Natural Science Foundation of Shandong Province (ZR2016BL23), the National Natural Science Foundation of China (21706027, 21476247 and 21406254) and Science and technology project of Dezhou university (2016kjrc11)the National Natural Science Foundation of China 21476247Science and technology project of Dezhou university 2016kjrc11The Natural Science Foundation of Shandong Province ZR2016BL23

Figures(10)

  • Three ashes containing V and Ni were preparation for the study. CaO addition and coal ash blending were chosen for regulation of high temperature flow properties. The regulation mechanism was explored by XRD, SEM-EDX and ternary phase diagram analysis. The results show that karelianite and Ni are main refractory matters in petroleum coke ash at high temperature. CaO addition and coal ash blending decrease the liquid temperatures of ash components except V and Ni, which reduces the ash fusion temperatures. When the contents of V and Ni are fewer than 30% in ash, CaO can obviously decrease the fusion temperature of ash, and the viscosity-temperature property becomes crystal type. When the contents of V and Ni are higher than 30% in ash, coal ash blending is an effective method to decrease the fusion temperature. In this condition, 5% of coal ash blending ratio is required, and its viscosity-temperature property is suitable for slag tapping, but when the coal ash proportion is 10% the viscosity-temperature property of ash becomes crystal type for the precipitation of vanadium-rich spinel, which cannot meet the requirement of slag tapping.
  • 加载中
    1. [1]

      MIAO Chao, YANG Wei-jun, WANG Hao. Situation and trends in petroleum coke supply & demand by region of the world-Highlights for Argus Asia Petroleum Coke Summit[J]. Int Petrol Econ, 2014,22(5):15-20.  

    2. [2]

      LEE S H, YOON S J, RA H W, SON Y I, HONG J C, LEE J G. Gasification characteristics of coke and mixture with coal in an entrained-flow gasifier[J]. Energy, 2010,35(8):3239-3244. doi: 10.1016/j.energy.2010.04.007

    3. [3]

      ZHAN X, ZHOU Z, KANG W, WANG F. Promoted slurry ability of petroleum coke-water slurry by using black liquor as an additive[J]. Fuel Process Technol, 2010,91(10):1256-1260. doi: 10.1016/j.fuproc.2010.04.006

    4. [4]

      SUN Z, DAI Z, ZHOU Z, XU J, YU G. Comparative study of gasification performance between bituminous coal and petroleum coke in the industrial opposed multiburner entrained flow gasifier[J]. Energy Fuels, 2012,26(11):6792-6802.

    5. [5]

      LI Wen, BAI Jin. Coal Ash Chemistry[M]. Beijing:Science Press, 2013.

    6. [6]

      BRYERS R W. Utilization of petroleum coke and petroleum blends as a means of steam raising coke/coal[J]. Fuel Process Technol, 1995,44(1):121-141.  

    7. [7]

      JIA L, ANTHONY E J, CHARLAND J P. Investigation of vanadium compounds in ashes from a CFBC firing 100% petroleum coke[J]. Energy Fuels, 2002,16(2):397-403. doi: 10.1021/ef010238o

    8. [8]

      PARK W, OH M S. Slagging of petroleum coke ash using Korean anthracites[J]. J Ind and Eng Chem, 2008,14(3):350-356. doi: 10.1016/j.jiec.2007.12.004

    9. [9]

      DUCHENSNE M A, ILYUSHECHKIN A Y, HUGHES R W, LU D Y, MCCALDEN D J, MACCHI A, ANTHONY E J. Flow behaviour of slags from coal and petroleum coke blends[J]. Fuel, 2012,97(7):321-328.  

    10. [10]

      WANG Z, BAI J, KONG L, BAI Z, LI W. Effect of V and Ni on ash fusion temperatures[J]. Energy Fuels, 2013,27(12):7303-7313. doi: 10.1021/ef401651w

    11. [11]

      WANG Z, BAI J, KONG L, WEN X, LI X, BAI Z, LI W, SHI Y. Viscosity of coal ash slag containing vanadium and nickel[J]. Fuel Process Technol, 2015,136:25-33. doi: 10.1016/j.fuproc.2014.07.025

    12. [12]

      KONG Ling-xue, BAI Jin, LI Wen, BAI Zong-qing, GUO Zhen-xing. Effect of lime addition on slag fluidity of coal ash[J]. J Fuel Chem Technol, 2011,39(6):407-412.  

    13. [13]

      WANG Da-chuan, LIANG Qin-feng, GONG Xin, LIU Hai-feng, LIU Xia. Fusion properties of Zhujixi washed coal ash adding fluxes[J]. J Fuel Chem Technol, 2015,43(2):153-157.  

    14. [14]

      KONG Ling-xue. Study on flow properties of representative coal ashes at high temperature[D]. Taiyuan:Institute of Coal Chemistry Chinese Academy of Sciences, 2013.

    15. [15]

      LIU Tao, LI Xin-xin, WANG Wei-lin, WU Jia-feng, LIANG Peng. The affecting factors and regulaton of ash fusion characteristics[J]. J Shandong Univ Sci Technol, 2014,33(4):43-49.  

    16. [16]

      BAI J, LI W, LI C, BAI Z, LI B. Influence of coal blending on mineral transformation at high temperatures[J]. Min Sci Tech, 2009,19(3):300-305.

    17. [17]

      XU Rong-sheng, WANG Yong-gang, LIN Xiong-chao, YANG Sa-sha, AI Sha-jiang, YANG Yuan-ping. Mineralogical properties of lowering coal ash melting temperature using blending coal and fluxing agent[J]. J Fuel Chem Technol, 2015,43(11):1303-1308.  

    18. [18]

      LI H, YOSHIHIKO N, DONG Z, ZHANG M. Application of the FactSage to predict the ash melting behavior in reducing conditions[J]. Chinese J Chem Eng, 2006,14(6):784-789. doi: 10.1016/S1004-9541(07)60012-3

    19. [19]

      NAKANO J, KWONG K S, BENNETT J, LAM T, FERNADEZ L, KOMLWIT P, SRIDHAR S. Phase equilibria in synthetic coal-pet coke slags(Al2O3-CaO-FeO-SiO2-V2O3) under simulated gasification conditions[J]. Energy Fuels, 2011,25(7):3298-3306. doi: 10.1021/ef200633q

  • 加载中
    1. [1]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    2. [2]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    3. [3]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    4. [4]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    5. [5]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    6. [6]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    7. [7]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    8. [8]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    9. [9]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    10. [10]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    11. [11]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    12. [12]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    13. [13]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    14. [14]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    15. [15]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    16. [16]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    17. [17]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    18. [18]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    19. [19]

      Qiang Wu Wenhua Hou . Teaching Classical Contents Newly: Taking Temperature–Entropy Diagram as an Example. University Chemistry, 2025, 40(4): 399-407. doi: 10.12461/PKU.DXHX202407102

    20. [20]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

Metrics
  • PDF Downloads(1)
  • Abstract views(1256)
  • HTML views(301)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return