Citation: Zhao Ruirui, Bai Yunfeng, Chen Xiaoliang, Feng Feng, Shuang Shaomin. Research Progress of Aptamers in Cancer Diagnosis and Targeted Therapy[J]. Chemistry, ;2020, 83(11): 977-985. shu

Research Progress of Aptamers in Cancer Diagnosis and Targeted Therapy

Figures(5)

  • Nucleic acid aptamers are oligonucleotide fragments obtained from nucleic acid molecule libraries using in vitro screening technology, namely exponentially enriched ligand system evolution technology (SELEX). They have high specificities and affinities to the targets. The biosensing research using the aptamer as the recognition unit and the in vivo and in vitro imaging research of the aptamer coupling imaging reagents have great application prospects in clinical diagnosis. In addition, aptamers targeting cancer cells or tissues have fewer side effects than traditional chemotherapeutics, and they also have great application prospects in the clinic. This article reviews the current research progress of aptamers in cancer diagnosis and targeted therapy, and analyzes the current problems and challenges.
  • 加载中
    1. [1]

      DeSantis C, Ma J, Bryan L, et al. CA Cancer J. Clin., 2014, 64(1): 52~62.

    2. [2]

      Liu M, Li Z Y, Yang J J, et al. Cell Proliferation, 2016, 49(4): 409~420.

    3. [3]

      Harbeck N, Penault-Llorca F, Cortes J, et al. Nat. Rev. Dis. Primers, 2019, 5: 1~31.

    4. [4]

      Mayer G. Angew. Chem., 2009, 48(15): 2672~2689.

    5. [5]

      Fish G, Haller J A, Ho A C, et al. Ophthalmology, 2003, 110(5): 979~986.

    6. [6]

      Bayrac A T, Sefah K, Parekh P, et al. ACS Chem. Neurosci., 2011, 2(3): 175~181.

    7. [7]

      Sun H G, Zhu X, Lu P Y, et al. Mol. Ther-Nucl. Acids, 2014, 3: 1~14.

    8. [8]

      Chen C H B, Chernis G A, Hoang V Q, et al. PNAS, 2003, 100: 9226~9231.

    9. [9]

      Shangguan D H, Li Y, Tang Z W, et al. PNAS, 2006, 103(32): 11838~11843.

    10. [10]

      Sefah K, Phillips J A, Xiong X L, et al. Analyst, 2009, 134(9): 1765~1775.

    11. [11]

      Li X, An Y, Jin J, et al. Anal. Chem., 2015, 87(9): 4941~4948.

    12. [12]

      Bai Y F, Feng F, Zhao L, et al. Biosens. Bioelectron., 2013, 47: 265~270.

    13. [13]

      Bai Y F, Feng F, Zhao L, et al. Analyst, 2014, 139 (8): 1843~1846.

    14. [14]

      Bai Y F, Zhao R F, Feng F, et al. Anal. Lett., 2017, 50(4): 682~689.

    15. [15]

      Liu H Y, Bai Y F, Feng F, et al. Anal. Methods, 2017, 9: 744~747.

    16. [16]

      Liu H Y, Bai Y F, Feng F, et al. Sens. Actuat. B, 2018, 256: 413~419.

    17. [17]

      Zhang Y, Bai Y F, Feng F, et al. Anal. Methods, 2016, 8: 6131~6134.

    18. [18]

      Borissoff J I, Spronk H M H, Heeneman S, et al. Cardiovasc. Res., 2009, 82(3): 392~403.

    19. [19]

      Liu Y, Wang H, Li S Y, et al. Sens. Actuat. B, 2018, 258: 402~407.

    20. [20]

      Wu Y, Xiao F, Wu Z, et al. Anal. Chem., 2017, 89(5): 2852~2858.

    21. [21]

      Zhu Y, Hu X C, Shi S, et al. Biosens. Bioelectron., 2016, 79: 205~212.

    22. [22]

      Zhu R Q, Song J P, Shuang S M, et al. Talanta, 2019, 204: 294~303.

    23. [23]

      Nagrath S, Sequist L V, Maheswaran S, et al. Nature, 2008, 450(7173): 1235~1239.

    24. [24]

      Khoshfetrat S M, Mehrgardi M A. Bioelectrochemistry, 2017, 114: 24~32.

    25. [25]

      Wang K, He M Q, Zhai F H, et al. Talanta, 2017, 166: 87~92.

    26. [26]

      Wang K, Fan D Q, Liu Y Q, et al. Biosens. Bioelectron., 2015, 73: 1~6.

    27. [27]

      Zhao Z, Xu L, Shi X, et al. Analyst, 2009, 134(9): 1808~1814.

    28. [28]

      Song Y, Zhu Z, An Y, et al. Anal. Chem., 2013, 85(5): 4141~4149.

    29. [29]

      Meng H M, Zhang X B, Lv Y F, et al. ACS Nano, 2014, 8(6): 6171~6181.

    30. [30]

      Peng P, Du Y, Zheng J, et al. Angew. Chem. Int. Ed., 2019, 58(6): 1648~1653.

    31. [31]

      Shi H, Tang Z, Kim Y, et al. Chem. Asian J., 2010, 5(10): 2209~2213.

    32. [32]

      Hu H, Dai A, Sun J, et al. Nanoscale, 2013, 5: 10447~10454.

    33. [33]

      Zhang Q, Yin T, Gao G, et al. ACS Appl. Mater. Interf., 2017, 9(21): 17777~17785.

    34. [34]

      Zhao C H, Song X B, Jin W G, et al. Anal. Chim. Acta, 2019, 1056: 108~116.

    35. [35]

      Dalia L C, Elizabeth J, You M, et al. WIREs Nanomed. Nanobiotechnol., 2011, 3(3): 328~340.

    36. [36]

      Wang C H, Huang Y F, Yeh C K. Langmuir, 2011, 27(11): 6971~6976.

    37. [37]

      Perkins A C, Missailidis S. Q. J. Nucl. Med. Mol. Im., 2007, 51(4): 292~296.

    38. [38]

      Charlton J, Sennello J, Smith D. Chem. Biol., 1997, 4(11): 809~816.

    39. [39]

      Li J, Zheng H, Bates P J, et al. Nucl. Med. Biol., 2014, 41(2): 179~185.

    40. [40]

      Tan L, Neoh K G, Kang E T, et al. Macromol. Biosci., 2011, 11(10): 1331~1335.

    41. [41]

      Zhu G Z, Zheng J, Song E Q, et al. PNAS, 2013, 110(20): 7998~8003.

    42. [42]

      Zhang H M, Ma Y L, Xie Y, et al. Sci. Rep., 2015, 5: 1~8.

    43. [43]

      Thelu H V P, Atchimnaidu S, Perumal D, et al. ACS Appl. Bio. Mater., 2019, 2(12): 5227~5234.

    44. [44]

      Chang M, Yang C S, Huang D M, et al. ACS Nano, 2011, 5(8): 6156~6163.

    45. [45]

      Liu Q, Wang D, Xu Z, et al. ChemBioChem, 2019, 20(9): 1139~1144.

    46. [46]

      Tian Y, Huang Y, Chen T, et al. Chem. Commun., 2018, 54 (68): 9394~9397.

    47. [47]

      Zhan Y, Ma W, Lin Y, et al. ACS Appl. Mater. Interf., 2019, 11(17): 15354~15365

    48. [48]

      Lim K S, Lee D Y, Bull D A, et al. Adv. Funct. Mater., 2015, 25(34): 5445~5451.

    49. [49]

      Ma W, Zhan Y, Lin Y, et al. Nano Lett., 2019, 19(7): 4505~4517.

    50. [50]

      Rana S, Bajaj A, Mout R, et al. Adv. Drug. Del. Rev., 2012, 64(2): 200~216.

    51. [51]

      Probst C E, Zrazhevskiy P, Bagalkot V, et al. Adv. Drug Del. Rev., 2013, 65(5): 703~718.

    52. [52]

      Allen T M, Cullis P R. Adv. Drug Del. Rev., 2013, 65(1): 36~48.

    53. [53]

      Wang Y X J, Xuan S, Port M, et al. Curr. Pharm. Des., 2013, 19(37): 6575~6593.

    54. [54]

      Meng L, Zhang X, Lu Q, et al. Biomaterials, 2012, 33(6): 1689~1698.

    55. [55]

      Ma X, Tao H, Yang K, et al. Nano Res., 2012, 5(3): 199~212.

    56. [56]

      Guan Q, Zhou L L, Dong Y B, et al. Eur. J. Chem., 2020, 26: 5583~5591.

    57. [57]

      Wu X, Wu M, Zhao J X. Nanomed. Nanotechnol., 2014, 10(2): 297~312.

    58. [58]

      Zhu E T, Song X Y, Zhou W H, et al. J. Mater. Chem., 2009, 19(41): 7765~7770.

    59. [59]

      Moosavian S A, Sahebkar A. Cancer Lett., 2019, 448: 144~154.

    60. [60]

      Kang H, O'Donoghue M B, Liu H, et al. Chem. Commun., 2010, 46(2): 249~251.

    61. [61]

      Choi W I, Kim J Y, Kang C, et al. ACS Nano, 2011, 5(3): 1995~2003.

    62. [62]

      Kolovskaya O S, Zamay T N, Belyanina I V, et al. Mol. Ther. Nucl. Acids, 2017, 9: 12~21.

    63. [63]

      Li Y, Wang X L, Gao L, et al. J. Mater. Sci., 2018, 50: 14134~14148.

    64. [64]

      Chandrasekaran R, Lee A S W, Yap L W, et al. Nanoscale, 2016, 8(1): 187~196.

    65. [65]

      Bala J, Bhaskar A, Varshney A, et al. RNA Biol., 2011, 8(1): 101~111.

    66. [66]

      Han D, Zhu G, Wu C, et al. ACS Nano, 2013, 7(3): 2312~2319.

    67. [67]

      Liu Y, Hou W J, Xia L, et al. Chem. Sci., 2018, 9: 7505~7509.

    68. [68]

      Meng H M, Hu X X, Kong G Z, et al. Theranostics, 2018, 8(16): 4332~4344.

    69. [69]

      Li H, Hu H T, Zhao Y J, et al. Anal. Chem., 2015, 87(7): 3736~3745.

    70. [70]

      Cao Y, Dong H, Yang Z, et al. ACS Appl. Mater. Interf., 2017, 9(1): 159~166.

    71. [71]

      Zhao C H, Song X B, Jin W G, et al. Anal. Chim. Acta, 2019, 1056: 108~116.

    72. [72]

      Ouellet E, Foley J H, Conway E M, et al. Biotechnol. Bioeng., 2015, 112: 1506~1522.

    73. [73]

      Levay A, Brenneman R, Hoinka J, et al. Nucl. Acids Res., 2015, 43: e82.

    74. [74]

      Shao K, Ding W, Wang F, et al. PLoS One, 2011, 6: e24910.

    75. [75]

      Krylova S M, Bruce C, Bagg E A, et al. Anal. Chem., 2015, 87: 1411~1419.

  • 加载中
    1. [1]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    2. [2]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    3. [3]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    4. [4]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    5. [5]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    6. [6]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    7. [7]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    8. [8]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    9. [9]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    10. [10]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    11. [11]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    12. [12]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    13. [13]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    14. [14]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    15. [15]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    16. [16]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    17. [17]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    18. [18]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    19. [19]

      Fa Wang Yu Chen Hui Chao . Ruthenium(II) Complexes as Photoactivated Chemo-Prodrugs for Hypoxic Tumor Therapy. University Chemistry, 2025, 40(7): 200-212. doi: 10.12461/PKU.DXHX202410024

    20. [20]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

Metrics
  • PDF Downloads(76)
  • Abstract views(3037)
  • HTML views(1064)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return