Citation: Jiafei Ren, Xing Huang, Qifang Li, Zheng Zhou. Research Progress in Reinforcement Composite Silica Aerogel[J]. Chemistry, ;2021, 84(4): 305-312. shu

Research Progress in Reinforcement Composite Silica Aerogel

Figures(4)

  • SiO2 aerogel is a type of porous material with nanostructure. It has broad application prospects in the fields of acoustics, optics, thermotics, and electricity. However, poor mechanical properties limit its practical applications. At present, incorporating reinforcement into SiO2 aerogel is the most effective way to improve its mechanical properties, and commonly used reinforcement can be classified into fibers, polymers, nanomaterials, etc. The latest research progress of the reinforcement composite SiO2 aerogel is reviewed, the preparation method and the reinforcement mechanism are analyzed, and the future research focus on improving the mechanical properties of aerogel has been prospected.
  • 加载中
    1. [1]

      Nicola H, Ulrich S. Angew. Chem. Int. Ed., 1998, 37(1-2): 22~45. 

    2. [2]

      Soleimani A D, Abbasi M H. J. Mater. Process. Technol., 2008, 199: 10~26. 

    3. [3]

      Maleki H, Durães L, Portugal A. J. Non-Cryst. Solids, 2014, 385: 55~74. 

    4. [4]

      Gesser H D, Goswami P C. Chem. Rev., 1989, 89: 765~788. 

    5. [5]

      Pierre A C, Pajonk G. Chem. Rev., 2002, 102: 4243~4265. 

    6. [6]

      Meador M A, Wright S, Sandberg A, et al. ACS Appl. Mater. Inter., 2012, 4: 6346~6353. 

    7. [7]

      Hong J Y, Wie J J, Xu Y, et al. Phys. Chem. Chem. Phys., 2015, 17: 30946~30962. 

    8. [8]

      tandeker S, Novak Z, Knez Z. J. Hazard. Mater., 2009, 165: 1114~1118. 

    9. [9]

      Wu J R, Zeng L P, Huang X P, et al. J. Mater. Chem. A, 2017, 5: 15048~15055. 

    10. [10]

      He C L, Huang J Y, Li S H, et al. ACS Sustain. Chem. Eng., 2018, 6: 927~936. 

    11. [11]

      Gao H Y, Bo L J, Liu P P, et al. Sol. Energ. Mat. Sol. C., 2019, 201: 110122. 

    12. [12]

      Maleki H. Chem. Eng. J., 2016, 300: 98~118. 

    13. [13]

      Xu X, Dong F H, Yang X X, et al. J. Agric. Food Chem., 2019, 67: 637~643. 

    14. [14]

      Chen L, Du R, Zhu J H, et al. Small, 2015, 11(12): 1423~1429. 

    15. [15]

    16. [16]

    17. [17]

    18. [18]

    19. [19]

    20. [20]

    21. [21]

      Zhou T, Cheng X D, Zhang H P, et al. Appl. Surf. Sci., 2018, 437: 321~388. 

    22. [22]

      Zhang X, Zhang T, Yi Z, et al. Ceram. Int., 2020, 46(18): 28561~28568. 

    23. [23]

    24. [24]

      Li X L, Wang Q P, He J, et al. J. Sol-Gel Sci. Technol., 2013, 67: 646~653. 

    25. [25]

    26. [26]

    27. [27]

      Li Z, Cheng X D, Zhang H P. et al. Compos. Part A, 2016, 84: 316~325. 

    28. [28]

      Shi M, Tang C, Yang X, et al. RSC Adv., 2017, 7(7): 4039~4045. 

    29. [29]

    30. [30]

    31. [31]

      Wang Q, Yu H, Wang H T, et al. J. Colloid Interf. Sci., 2020, 573: 62~70. 

    32. [32]

      Yu Z L, Yang N, Apostolopoulou-Kalkavoura V, et al. Angew. Chem. Int. Ed., 2018, 57(17): 4538~4542. 

    33. [33]

      Zu G Q, Shimizu T, Kanamori K, et al. ACS Nano, 2018, 12: 521~532. 

    34. [34]

    35. [35]

    36. [36]

    37. [37]

      Tang X B, Sun A H, Chu C Y, et al. Mater. Design., 2017, 115: 415~421. 

    38. [38]

      Wang F, Dou L, Dai J W, et al. Angew. Chem. Int. Ed., 2020, 59(21): 8285~8292. 

    39. [39]

      Lamy-Mendes A, Silva R F, Durãesl L. J. Mater. Chem. A, 2018, 6: 1340~1369. 

    40. [40]

      Duque J G, Hamilton C E, Doom S K, et al. ACS Nano, 2011, 5: 6686~6694. 

    41. [41]

      Meng J K, Cao Y, Zheng X C, et al. Electrochim. Acta, 2015, 176: 1001~1009. 

    42. [42]

      Sun T, Zhuo Q, Fan H Y, et al. J. Porous Mater., 2014, 21: 967~973. 

    43. [43]

      Lei Y F, Hu Z J, Song H H, et al. Mater. Chem. Phys., 2017, 187: 183~190. 

    44. [44]

      Lamy-Mendes A, Girão A V, Silva R F, et al. Micropor. Mesopor. Mater., 2019, 288: 109575. 

    45. [45]

    46. [46]

      Patil S P, Shendye P, Market B. Compos. Part B, 2020, 190: 107884 

    47. [47]

    48. [48]

      TanaKa K, Chujo Y. J. Mater. Chem., 2012, 22: 1733~1746. 

    49. [49]

    50. [50]

      Duan Y N, Jana S C, Espe M P, et al. Langmuir, 2012, 28: 15362~15371. 

    51. [51]

      Wang L B, Zhou Z, Li Q F, et al. Ceram. Int., 2019, 45: 14586~14593. 

    52. [52]

      Wang L B, Zhou Z, Li Q F, et al. Langmuir, 2019, 35(26): 8692~8698. 

    53. [53]

      Wang L B, Guo R L, Ren J F, et al. Ceram. Int., 2020, 46(8): 10362~10369. 

  • 加载中
    1. [1]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    2. [2]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    7. [7]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    8. [8]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    9. [9]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    10. [10]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    11. [11]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    12. [12]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    13. [13]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    14. [14]

      Zhangyong LIULihui XUYue YANGLiming WANGHong PANXinzhe HUANGXueqiang FUYingxiu ZHANGMeiran DOUMeng WANGYi TENG . Preparation and photocatalytic performance of CsxWO3/TiO2 based on full spectral response. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1445-1464. doi: 10.11862/CJIC.20240345

    15. [15]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    16. [16]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    17. [17]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    18. [18]

      Bowen YangRui WangBenjian XinLili LiuZhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2310024-0. doi: 10.3866/PKU.WHXB202310024

    19. [19]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    20. [20]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

Metrics
  • PDF Downloads(48)
  • Abstract views(2392)
  • HTML views(943)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return