Citation: ZHANG Yu-kui, ZHANG Hai-xia, ZHU Zhi-ping. Physical and chemical properties of fly ash from fluidized bed gasification of Zhundong coal[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(3): 305-313. shu

Physical and chemical properties of fly ash from fluidized bed gasification of Zhundong coal

  • Corresponding author: ZHANG Hai-xia, zhanghaixia@iet.cn
  • Received Date: 1 July 2015
    Revised Date: 12 October 2015

    Fund Project: The project was supported by the National Natural Science Foundation of China 21306193

Figures(9)

  • The ash fusion characteristics, physical structure, chemical compositions and gasification reactivity of Zhundong coal (ZD) fly ash from fluidized bed gasification were explored by fusion point analyzer, X-ray fluorescence spectrometer (XRF), scanning electron microscopy (SEM), and thermo-gravimetric analyzer. The results show that the concentrations of minerals in ZD fly ash, such as SiO2, Fe2O3, Na2O, CaO, change greatly during gasification process, but the ash fusion temperature of ZD fly ash is similar to that of ZD. There is a wide particle-size distribution in ZD fly ash, which shows a significant bimodal distribution, and a large difference of elemental compositions for ZD fly ash of different particle size. The reactivity of ZD fly ash increases with the increase in gasification temperature. Compared with the ZD char from pyrolysis, the ZD fly ash has more advanced carbon crystalline structure, a larger surface area and is relatively rich in meso-pores and macro-pores, which results in a higher gasification reactivity.
  • 加载中
    1. [1]

      CHEN Chuan, ZHANG Shou-yu, LIU Da-hai, GUO Xi, DONG Ai-xia, XIONG Shao-wu, SHI Da-zhong, LÜ Jun-fu. Existense form of sodium in high sodium coals from Xinjiang and its effect on combustion process[J]. J Fuel Chem Technol, 2013,41(7):832-838.  

    2. [2]

      DONG Ming-gang. Influence of high-sodium coal upon slagging, contamination, and corrosion on the heating surface of boilers[J]. Therm Power Gener, 2008,37(9):35-39.  

    3. [3]

      YANG Zhong-can, LIU Jia-li, HE Hong-guang. Study on properties of Zhundong coal in Xinjiang region and type-selection for boilers burning this coal sort[J]. Therm Power Gener, 2010,39(8):38-40+44.  

    4. [4]

      YU Qiang, ZHANG Jian-qiang. Effect of burning high-sodium coal on boiler heating surface[J]. Boiler Manuf, 2012(4):4-6.  

    5. [5]

      ZHANG Shou-yu, CHEN Chuan, SHI Da-zhong, LÜ Jun-fu, WANG Jian, GUO Xi, DONG Ai-xia, XIONG Shao-wu. Situation of combustion utilization of high sodium coal[J]. Proc CSEE, 2013,33(5):1-12+7.  

    6. [6]

      LIN C L, PENG T H, WANG W J. Effect of particle size distribution on agglomeration/defluidization during fluidized bed combustion[J]. Powder Technol, 2011,207(1/3):290-295.  

    7. [7]

      LI Zhen-zhu, MA Xiu-wei, LI Feng-hai, XUE Zhao-min, HUANG Jie-jie, FANG Yi-tian. Review on fly ash characteristics from coal gasification[J]. Appl Chem Ind, 2014,43(10):1891-1894+1898.  

    8. [8]

      MONDAL P, DANG G S, GARG M O. Syngas production through gasification and cleanup for downstream applications -recent developments[J]. Fuel Process Technol, 2011,92(8):1395-1410. doi: 10.1016/j.fuproc.2011.03.021

    9. [9]

      YANG Xin, HUANG Jie-jie, FANG Yi-tian, WANG Yang. Slagging characteristics of fly ash from anthracite gasification in fludized bed[J]. J Fuel Chem Technol, 2013,41(1):1-8. doi: 10.1016/S1872-5813(13)60009-2 

    10. [10]

      OBOIRIEN B O, ENGELBRECHT A D, NORTH B C, ERAMUS R M, FALCON R. Mineral-Char interaction during gasification of high-ash coals in fluidized-bed gasification[J]. Energy Fuels, 2011,25(11):5189-5199. doi: 10.1021/ef201056j

    11. [11]

      KELEBOPILE L, SUN R, LIAO J. Fly ash and coal char reactivity from Thermo-gravimetric (TGA) experiments[J]. Fuel Process Technol, 2011,92(6):1178-1186. doi: 10.1016/j.fuproc.2011.01.007

    12. [12]

      LI Feng-hai, LI Zhen-zhu, HUANG Jie-jie, FANG Yi-tian. Characteristics of fine chars from fluidized bed gasification of Shenmu coal[J]. J Fuel Chem Technol, 2014,42(10):1153-1159. doi: 10.1016/S1872-5813(14)60046-3 

    13. [13]

      GU J, WU S, WU Y, LI Y, GAO J. Differences in gasification behaviors and related properties between entrained gasifier fly ash and coal char[J]. Energy Fuels, 2008,22(6):4029-4033. doi: 10.1021/ef800527x

    14. [14]

      JING X, WANG Z, YU Z, ZHANG Q, LI C, FANG Y. Experimental and kinetic investigations of CO2 gasification of fine chars separated from a pilot-Scale fluidized-bed gasifier[J]. Energy Fuels, 2013,27(5):2422-2430. doi: 10.1021/ef4002296

    15. [15]

      JIANG Hai-bo, ZHU Zhi-ping, WANG Yue, YU Kuang-shi, LIU Jia-peng, LÜ Qing-gang. Coal gasification in fluidized bed[J]. Chem Eng, 2014,42(8):60-64.

    16. [16]

      FAN Dong-mei. Characteristics study on pyrolysis and gasification of low rank coals[D]. Beijing: University of Chinese Academy of Sciences (Institute of Engineering Thermophysics), 2013.

    17. [17]

      LI Wei, LI Shi-yuan, REN Qiang-qiang, LÜ Qing-gang, BAO Shao-lin. Combustion characteristics of residual carbon after gasification of coal from Ningxia Shigouyi[J]. Coal Convers, 2013,36(3):19-23.  

    18. [18]

      LIU Jing, WANG Zhi-hua, XIANG Fei-peng, HUANG Zhen-yu, LIU Jian-zhong, ZHOU Jun-hu, CEN Ke-fa. Models of occurence and transformation of alkali metals in Zhundong coal during combustion[J]. J Fuel Chem Technol, 2014,42(3):316-322.  

    19. [19]

      ZHAO Xiao-hui. Study on ash deposition in boiler based on modes of occurrence and transformation of mineral matters[D]. Hangzhou: Zhejiang University, 2007.

    20. [20]

      LI F, HUANG J, FANG Y, WANG Y. Formation mechanism of slag during fluid-bed gasification of lignite[J]. Energy Fuels, 2011,25:273-280. doi: 10.1021/ef101268e

    21. [21]

      DAVISON R L, NATUSCH D F S, WALLACE J R, Evans C A. Trace-elements in fly ash-dependence of concentration on particle-size[J]. Environ Sci Technol, 1974,8(13):1107-1113. doi: 10.1021/es60098a003

    22. [22]

      MANZOORI A R, AGARWAL P K. The fate of organically bound inorganic elements and sodium-chloride during fluidized-bed combustion of high sodium, high sulfur low rank coals[J]. Fuel, 1992,71(5):513-522. doi: 10.1016/0016-2361(92)90148-H

    23. [23]

      DONG Qian, ZHANG Hai-xia, ZHU Zhi-ping. Influence of pretreatment on Na content analysis of Zhundong coal[J]. Clean Coal Technol, 2015,21(2):82-86.  

    24. [24]

      WANG X, XU Z, WEI B, ZHANG L, YANG T, MIKULCIC H, DUIC N. The ash deposition mechanism in boilers burning Zhundong coal with high contents of sodium and calcium: A study from ash evaporating to condensing[J]. Appl Therm Eng, 2015,80:150-159. doi: 10.1016/j.applthermaleng.2015.01.051

    25. [25]

      TAKARADA T, TAMAI Y, TOMITA A. Reactivities of 34 coals under steam gasification[J]. Fuel, 1985,64(10):1438-1442. doi: 10.1016/0016-2361(85)90347-3

  • 加载中
    1. [1]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    2. [2]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    3. [3]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    4. [4]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    5. [5]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    6. [6]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    7. [7]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    8. [8]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    9. [9]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    10. [10]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    11. [11]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    12. [12]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    13. [13]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    14. [14]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    15. [15]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    16. [16]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    17. [17]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    18. [18]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    19. [19]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    20. [20]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

Metrics
  • PDF Downloads(0)
  • Abstract views(1031)
  • HTML views(193)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return