Citation: Shurui Fan, Yichao Wu, Xiaonian Li, Lili Lin. Catalysis in Methanol-H2 Energy System: Progresses and Challenges[J]. Chemistry, ;2021, 84(1): 21-30. shu

Catalysis in Methanol-H2 Energy System: Progresses and Challenges

  • Corresponding author: Lili Lin, linll@zjut.edu.cn
  • Received Date: 27 July 2020
    Accepted Date: 10 October 2020

Figures(7)

  • Methanol is considered as an excellent hydrogen carrier (the gravimetric hydrogen density over 12.5%). The "methanol-hydrogen" energy system has been proposed in aiming at solving the H2 transportation and storage problem, one of the major bottleneck problems in hydrogen application, and promoting the utilization of hydrogen energy in large scale. How to generate hydrogen from methanol efficiently and selectively has been one of the vital components in the methanol-H2 system. In this review, the recent progresses and challenges in the catalysis for hydrogen production from methanol are introduced in detail. We discuss the advantages and economic rationality of storing and releasing hydrogen into/from methanol. The methods of catalytic hydrogen evolution from methanol along with the structure and mechanism of representative hydrogen production catalysts are also reviewed in details. We anticipate this perspective to provide references for the catalytic studies of methanol-H2 energy system and promote the development of suitable catalysts for the potential large scale H2 production in the near future.
  • 加载中
    1. [1]

      Obama B. Science, 2017, 355(6321): 126~129. 

    2. [2]

      Kamat P V. J. Phys. Chem. C, 2007, 111(7): 2834~2860. 

    3. [3]

      Deng Z Y, José M F F, Sakka Y. J. Am. Ceram. Soc., 2008, 91(12): 3825~3834. 

    4. [4]

      Aaldto-Saksa P T, Cook C, Kiviahob J, et al. J. Power Sources, 2018, 396: 803~823. 

    5. [5]

      Schlapbach L, Zuttel A. Nature, 2001, 414(6861): 353~358. 

    6. [6]

      http://energy.gov/eere/fuelcells/downloads/target-explan-ation-document-onboard-hydrogen-storage-light-duty-fuel-cell.

    7. [7]

      Teichmann D, Arlt W, Wasserscheid P, et al. Energy Environ. Sci., 2011, 4(8): 2767~2773. 

    8. [8]

      Palo D R, Dagle R A, Holladay J D. Chem. Rev., 2007, 107(10): 3992~4021. 

    9. [9]

      Xie Y J, Hu P, Ben-David Y, et al. Angew. Chem. Int. Ed., 2019, 58(15): 5105~5109. 

    10. [10]

      Shih C F, Zhang T, Li J H, et al. Joule, 2018, 2(10): 1925~1949. 

    11. [11]

      Chen S, Pei C L, Gong J L. Energy Environ. Sci., 2019, 12(12): 3473~3495. 

    12. [12]

      Olah G A. Angew. Chem. Int. Ed., 2005, 44(18): 2636~2639. 

    13. [13]

      Miyamoto Y, Akiyama M, Nagai M. Catal. Today, 2009, 146(1-2): 87~95. 

    14. [14]

      Hou T F, Zhang S Y, Chen Y D, et al. Renew. Sust. Energ. Rev., 2015, 44: 132~148. 

    15. [15]

      Iulianelli A, Ribeirinha P, Mendes A, et al. Renew. Sust. Energ. Rev., 2014, 29: 355~368. 

    16. [16]

    17. [17]

      https://h2.live/en/wasserstoffautos/toyota-mirai.

    18. [18]

      Yu K M, Tong W Y, Adam W, et al. Nat. Commun., 2012, 3: 1230. 

    19. [19]

      Setthapun W, Bej S K, Thompson L T. Top. Catal., 2008, 49(1-2): 73~80. 

    20. [20]

      Oihane S, Ion V, Iñigo P. Int. J. Hydrogen Energy, 2016, 41: 5250~5259. 

    21. [21]

      Pojanavaraphan C, Nakaranuwattana W, Luengnaruemitchai A, et al. Chem. Eng. J., 2014, 240: 99~108. 

    22. [22]

      Liu S T, Takahashi K, Fuchigami K, et al. Appl. Catal. A, 2006, 299: 58~65. 

    23. [23]

      Wang Z F, Xi J Y, Wang W P, et al. J. Mol. Catal. A, 2003, 191(1): 123~134. 

    24. [24]

      Hernández-Ramírez E, Wang J A, Chen L F. Appl. Surf. Sci., 399: 77~85.

    25. [25]

      Yong S T, Ooi C W, Chai S P, et al. Int. J. Hydrogen Energy, 2013, 38(22): 9541~9552. 

    26. [26]

      Chen W H, Lin B J. Int. J. Hydrogen Energy, 2013, 38(24): 9973~9983. 

    27. [27]

      Araya S S, Liso V, Cui X T, et al. Energies, 2020, 13(3): 596. 

    28. [28]

      Pan L W, Wang S D. Int. J. Hydrogen Energy, 2005, 30(9): 973~979. 

    29. [29]

      Choi Y, Stenger H G. Appl. Catal. B, 2002, 38(4): 259~269. 

    30. [30]

      Agrell J, Birgersson H, Boutonnet M, et al. J. Catal., 2003, 219(2): 389~403. 

    31. [31]

      Sá S, Silva H, Brandão L, et al. Appl. Catal. B, 2010, 99(1-2): 43~57. 

    32. [32]

      Twigg M V, Spencer M S. Top. Catal., 2003, 22(3-4): 191~203.

    33. [33]

      Cortright R D, Davda R R, Dumesic J A, et al. Nature, 2002, 418(6901): 964~967. 

    34. [34]

      Davda R R, Shabaker J W, Huber G W, et al. Appl. Catal. B, 2005, 56(1-2): 171~186. 

    35. [35]

      Huber G W, Shabaker J W, Dumesic J A, et al. Science, 2003, 300(5628): 2075~2077. 

    36. [36]

      Li D D, Li Y, Liu X H, et al. ACS Catal., 2019, 9(10): 9671~9682. 

    37. [37]

      Coronado I, Stekrova M, Moreno L G, et al. Biomass Bioenergy, 2017, 106: 29~37. 

    38. [38]

      Sakamoto T, Morishima H, Yoshida A, et al. Catal. Lett., 2009, 131(3-4): 419~424. 

    39. [39]

      Miyao T, Yamauchi M, Narita H, et al. Appl. Catal. A, 2006, 299: 285~291. 

    40. [40]

      Park J H, Kim Y T, Park E D, et al. ChemCatChem, 2013, 5(3): 806~814. 

    41. [41]

      Nielsen M, Alberico E, Baumann W, et al. Nature, 2013, 495(7439): 85~89. 

    42. [42]

      Monney A, Barsch E, Sponholz P, et al. Chem. Commun., 2014, 50(6): 707~709. 

    43. [43]

      Alberico E, Sponholz P, Cordes C, et al. Angew. Chem. Int. Ed., 2013, 52(52): 14162~14166. 

    44. [44]

      Prichatz C, Alberico E, Baumann W, et al. ChemCatChem, 2017, 9(11): 1891~1896. 

    45. [45]

      Andérez-Fernández M, Vogt L K, Fischer S, et al. Angew. Chem., 2017, 129(2): 574~577. 

    46. [46]

      Alberico E, Lennox A J J, Vogt L K, et al. J. Am. Chem. Soc., 2016, 138(45): 14890~14904. 

    47. [47]

      Lin L L, Zhou W, Gao R, et al. Nature, 2017, 544(7648): 80~83. 

    48. [48]

      Cai F F, Ibrahim J J, Fu Y, et al. Appl. Catal. B, 2020, 264: 118500. 

  • 加载中
    1. [1]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    2. [2]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    3. [3]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    4. [4]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    5. [5]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    6. [6]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    7. [7]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    8. [8]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    9. [9]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    10. [10]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    11. [11]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    12. [12]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    13. [13]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    14. [14]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    15. [15]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    16. [16]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    17. [17]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    18. [18]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    19. [19]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    20. [20]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

Metrics
  • PDF Downloads(115)
  • Abstract views(3042)
  • HTML views(1247)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return