Effect of CO2 in syngas on methanation performance of Mo-based catalyst
- Corresponding author: WANG Wei-han, wangwh@tju.edu.cn MA Xin-bin, xbma@tju.edu.cn
Citation:
LI Zhen-hua, QU Jiang-lei, WANG Wei-han, WANG Bao-wei, MA Xin-bin. Effect of CO2 in syngas on methanation performance of Mo-based catalyst[J]. Journal of Fuel Chemistry and Technology,
;2016, 44(8): 985-992.
ZHANG Dong-ke. Energy options in sustainable development[J]. J Fuel Chem Technol, 2005,33(4):399-406.
HU Liang-hua, FENG Zai-nan, YAO Ze-long, LIU Wei, SHEN Tu-liang, WANG Jun-feng. Aspen Plus simulation of coke oven gas methanation process[J]. Nat Gas Ind, 2013,38(3):53-57.
SABATIER P, SENDERENS J B. New synthesis of methane[J]. CR Acad Sci Paris, 1902,134:514-516.
SABATIER P, SENDERENS J B. Hydrogenation of CO over nickel to produce methane[J]. J Soc Chim Ind, 1902,21:504-506.
HUANG Guo-bao, WANG Zhi-qing, LI Qing-feng, HUANG Jie-jie, FANG Yi-tian. Syngas methanation over nickel catalyst in liquid-phase[J]. J Fuel Chem Technol, 2014,42(8):952-957.
MINCHENER A J. Coal gasification for advanced power generation[J]. Fuel, 2005,84(17):2222-2235. doi: 10.1016/j.fuel.2005.08.035
SCHILDHAUER T J, SEEMANN M C, BIOLLAZ S M A. Fluidized bed methanation of wood-derived producer gas for the production of synthetic natural gas[J]. Ind Eng Chem Res, 2010,49(15):7034-7038. doi: 10.1021/ie100510m
WU Qie-yi, QIN Tao, YAN Zhi.Method for synthesizing methane by using coke-oven gas:CN, 101391935 A[P].2009-03-25.
HUANG Ming-jin, GUO Cheng-yu, YIN Ming-da.Methanation process for raw gas of synthetic ammonia:CN, 1313241 A[P].2001-09-19.
GALLETTI C, SPECCHIAS , SARACCO G, SPECCHIA V. CO-selective methanation over Ru/γ-Al2O3 catalysts in H2-rich gas for PEMFC applications[J]. Chem Eng Sci, 2010,65(1):590-596. doi: 10.1016/j.ces.2009.06.052
XU Chao, WANG Xing-jun, HU Xian-hui, CHEN Xue-li, WANG Fu-chen. Study on the syngas methanation of nickel-based catalyst[J]. J Fuel Chem Technol, 2012,40(2):216-220.
GAO J J, LIU Q, GU F N, LIU B, ZHONG Z Y, SU F B. Recent advances in methanation catalysts for the production of synthetic natural gas[J]. RSC Adv, 2015,5(29):22759-22776. doi: 10.1039/C4RA16114A
GAO Ju-zhong. Application and development of coal gasification technologies[J]. Clean Coal Technol, 2013(1):65-71.
YUAN Yong-tian, YIN Yan-hua, ZHOU Xu, ZHOU Jun-cheng. Methanation of thoree diffenent reaction systems of carbon oxides[J]. Chem Ind Eng Process, 2014,33(1):173-180.
YI Li-li, MA Lei, LU Chun-shan, LI Xiao-nian. Study on the catalytic hydrogenation of carbon dioxide for methanation[J]. Chem Prod Technol, 2004,11(5):33-35.
JIMÉNEZ V, SANCHEZ P, PANAGIOTOPOULOU P, VALVERDE J, ROMERO A. Methanation of CO, CO2 and selective methanation of CO, in mixtures of CO and CO2, over ruthenium carbon nanofibers catalysts[J]. Appl Catal A:Gen, 2010,390(1/2):35-44.
PANAGIOTOPOULOU P, KONDARIDES D, VERKIOS X. Selective methanation of CO over supported noble metal catalysts:Effects of the nature of the metallic phase on catalytic performance[J]. Appl Catal A:Gen, 2008,344(1/2):45-54.
ECKLE S, ANFANG H, BEHM R. What drives the selectivity for CO methanation in the methanation of CO2-rich reformate gases on supported Ru catalysts[J]. Appl Catal A:Gen, 2011,391(1):325-333.
WANG Cheng-xue, GONG Jie. Study on Ni-Mn-based catalysts for methanation of carbon dioxide[J]. Nat Gas Ind, 2011,36(1):4-15.
WANG Er-dong, WANG Hai-yang, DING Guo-zhong, SHANG Yu-guang, LI Zhen-hua, WANG Bao-wei, MA Xin-bin, QIN Shao-dong, SUN Qi. Effect of reaction parameters on the activity of sulfur-resistant methanation catalyst[J]. Chem React Eng Technol, 2012,28(1):75-81.
LI Z H, WANG H Y, WANG E D, LV J, SHANG Y G, DING G Z, WANG B W, MA X B, QIN S D, SU Q. The main factors controlling generation of synthetic natural gas by methanation of synthesis gas in the presence of sulphur-resistant Mo-based catalysts[J]. Kinet Catal, 2013,54(3):338-343. doi: 10.1134/S0023158413030117
WANG B W, DING G Z, SHANG Y G, LV J, WANG H Y, WANG E D, LI Z H, MA X B, QIN S D, SUN Q. Effects of MoO3 loading and calcination temperature on the activity of the sulphur-resistant methanation catalyst MoO3/γ-Al2O3[J]. Appl Catal A:Gen, 2012,431-432(1):144-150.
LIN C, WANG H Y, LI Z H, WANG B W, MA X B, QIN S D, SUN Q. Effect of a promoter on the methanation activity of Mo-based sulfur-resistant catalyst[J]. Front Chem Sci Eng, 2013,7(1):88-94. doi: 10.1007/s11705-013-1301-1
WANG Bao-wei, SHANG Yu-guang, DING Guo-zhong, WANG Hai-yang, WANG Er-dong, LI Zhen-hua, MA Xin-bin, QIN Shao-dong, SUN Qi. Ceria-alumina composite support on the sulfur-resistant methanation activity of Mo-based catalyst[J]. J Fuel Chem Technol, 2012,40(11):1390-1396.
CUI Xiao-xi, CAO Hui-bo, MENG Fan-hui, LI Zhong. Thermodynamic analysis for methanation of syngas[J]. Nat Gas Ind, 2012,37(5):15-19.
CHENG Hong-gang, WANG Teng-da, ZHANG Kai, NIU Yu-guang, YANG Yong-ping. Thermodynamic analysis of carbon deposition on catalyst for the production of substitute natural gas[J]. J Fuel Chem Technol, 2013,41(8):978-984.
DOU Bo-sheng, XIE Xiao-fan, WANG Yu-jie, SHI Xin. Sulfer loss and activity of Co-Mo-K/Al2O3 water gas shift catalyst[J]. Petrochem Technol, 1990(6):387-389.
LAURENT E, DELMON B. Influence of water in the deactivation of a sulfided NiMo/γ-Al2O3 catalyst during hydrodeoxygenation[J]. J Catal, 1994,146(1):281-285. doi: 10.1016/0021-9517(94)90032-9
Honghong Zhang , Zhen Wei , Derek Hao , Lin Jing , Yuxi Liu , Hongxing Dai , Weiqin Wei , Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
Yueguang Chen , Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Lewang Yuan , Yaoyao Peng , Zong-Jie Guan , Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
(a): Mo/Al; (b): Co-Mo/Al
(a): 10%CO2; (b): 20%CO2; (c): 30%CO2
■: x(CO); ○: s(CH4)
(a): different catalysts with 10% CO2 added; (b): Co-Mo/CeAl catalyst at different CO2 concentrations
(a): Mo/Al; (b): Co-Mo/Al; (c): Mo/CeAl; (d): Co-Mo/CeAl
(a): 10% CO2; (b): 20% CO2; (c): 30% CO2