Citation: CHENG Fu-long, GUO He-qin, CUI Jing-lei, HOU Bo, LI De-bao. Effect of calcination temperature on MgAlOx mixed oxides for converting formaldehyde and acetaldehyde to propanal[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(7): 841-847. shu

Effect of calcination temperature on MgAlOx mixed oxides for converting formaldehyde and acetaldehyde to propanal

  • Corresponding author: GUO He-qin, heqinguo@sxicc.ac.cn LI De-bao, dbli@sxicc.ac.cn
  • Received Date: 15 January 2018
    Revised Date: 11 May 2018

    Fund Project: the National Natural Science Foundation of China 21736007The project was supported by the National Natural Science Foundation of China (21736007, 21303241)the National Natural Science Foundation of China 21303241

Figures(6)

  • A series of MgAlOx mixed oxides were prepared by calcination of hydrotalcite materials at various temperatures ranging from 400 to 700℃. The physical and chemical properties of the catalysts were characterized by XRD, TG, N2 adsorption/desorption, NH3-TPD, and CO2-TPD techniques. The catalytic activity was evaluated by the condensation of formaldehyde and acetaldehyde. The results show that as the calcination temperatures increase, both the conversion of acetaldehyde and the space time yield of propanal first increase and then decrease, which shows the same trend with the amount of moderate basic sites, and the C-550 catalyst has the maximum of 39.22% and 103.86 g/(kg·h), respectively. Moreover, the yields of by-products including methanol and CO2 are also significantly related to the moderate and strong basic sites.
  • 加载中
    1. [1]

      CUI Xiao-ming. Production, application, and market prospect pf propaldehyde[J]. Hangzhou Chem Ind, 2003,33(3):17-20.  

    2. [2]

      LI Ming. Production, application, and market prospect pf propaldehyde[J]. Fine Chem Ind Raw Mater Intermed, 2005,23(6):23-29.  

    3. [3]

      ZHU X, LOBBAN L L, MALLINSON R G, RESASCO D E. Tailoring the mesopore structure of HZSM-5 to control product distribution in the conversion of propanal[J]. J Catal, 2010,271(1):88-98. doi: 10.1016/j.jcat.2010.02.004

    4. [4]

      ZHANG Fu-sheng. Preparation and application of propanal[J]. Jiangsu Chem Ind, 1996,24(4):35-37.  

    5. [5]

      KAINULAINEN T A, NIEMELA M K, KRAUSE A O I. Ethene hydroformylation on Co/SiO2 catalysts[J]. Catal Lett, 1998,53(1/2):97-101. doi: 10.1023/A:1019053805618

    6. [6]

      TRICAS H, DIEBOLT O, VAN LEEUWEN P W N M. Bulky monophosphite ligands for ethene hydroformylation[J]. J Catal, 2013,298:198-205. doi: 10.1016/j.jcat.2012.11.031

    7. [7]

      AI M. Formation of acrylaldehyde by vapor-phase aldol condensation 2. Phosphate catalysts[J]. Bull Chem Soc Jpn, 1991,64(4):1346-1350. doi: 10.1246/bcsj.64.1346

    8. [8]

      AI M. Formation of acrylaldehyde by vapor-phase aldol condensation 1. Basic oxide catalysts[J]. Bull Chem Soc Jpn, 1991,64(4):1342-1345. doi: 10.1246/bcsj.64.1342

    9. [9]

      AZZOUZ A, MESSAD D, NISTOR D, CATRINESCU C, ZVOLINSCHI A, ASAFTEI S. Vapor phase aldol condensation over fully ion-exchanged montmorillonite-rich catalysts[J]. Appl Catal A:Gen, 2003,241(1/2):1-13.  

    10. [10]

      DUMITRIU E, HULEA V, CHELARU C, CATRINESCU C, TICHIT D, DURAND R. Influence of the acid-base properties of solid catalysts derived from hydrotalcite-like compounds on the condensation of formaldehyde and acetaldehyde[J]. Appl Catal A:Gen, 1999,178(2):145-157. doi: 10.1016/S0926-860X(98)00282-8

    11. [11]

      CAVANI F, TRIFIRO F, VACCARI A. Hydrotalcite-type anionic clays:Preparation, properties and applications[J]. Catal Today, 1991,11(2):173-301. doi: 10.1016/0920-5861(91)80068-K

    12. [12]

      RAMASAMY K K, GRAY M, JOB H, SANTOSA D, LI X S, DEVARAJ A, KARKAMKAR A, WANG Y. Role of calcination temperature on the hydrotalcite derived MgO-Al2O3 in converting ethanol to butanol[J]. Top Catal, 2016,59(1):46-54. doi: 10.1007/s11244-015-0504-8

    13. [13]

      STOSIC D, HOSOGLU F, BENNICI S, TRAVERT A, CAPRON M, DUMEIGNIL F, COUTURIER J L, DUBOIS J L, AUROUX A. Methanol and ethanol reactivity in the presence of hydrotalcites with Mg/Al ratios varying from 2 to 7[J]. Catal Commun, 2017,89:8-14.  

    14. [14]

      GAO P, LI F, ZHAO N, XIAO F K, WEI W, ZHONG L S, SUN Y H. Influence of modifier (Mn, La, Ce, Zr and Y) on the performance of Cu/Zn/Al catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol[J]. Appl Catal A:Gen, 2013,468:442-452. doi: 10.1016/j.apcata.2013.09.026

    15. [15]

      LUO Jing, LI Hong-guang, ZHAO Ning, WANG Feng, XIAO Fu-kui. Selective oxidation of glycerol to dihydroxyacetone over layer double hydroxide intercalated with sulfonato-salen metal complexes[J]. J Fuel Chem Technol, 2015,43(6):677-683.  

    16. [16]

      CANTRELL D G, GILLIE L J, LEE A F, WILSON K. Structure-reactivity correlations in MgAl hydrotalcite catalysts for biodiesel synthesis[J]. App Catal A:Gen, 2005,287(2):183-190. doi: 10.1016/j.apcata.2005.03.027

    17. [17]

      GAO P, LI F, ZHAN H J, ZHAO N, XIAO F K, WEI W, ZHONG L S, WANG H, SUN Y H. Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol[J]. J Catal, 2013,298:51-60. doi: 10.1016/j.jcat.2012.10.030

    18. [18]

      DU Ya-li, XIE Xian-mei, WU xu, HU Qiu-xia, WANG Zhi-zhong. TG-DTA technology used in thermal decomposition of hydrotalcite-like compounds[J]. App Chem Ind, 2005,34(9):5-12.  

    19. [19]

      SHEN J Y, TU M, HU C. Structural and surface acid/base properties of hydrotalcite-derived MgAlO oxides calcined at varying temperatures[J]. J Solid State Chem, 1998,137(2):295-301. doi: 10.1006/jssc.1997.7739

    20. [20]

      DI COSIMO J I, DIEZ V K, XU M, IGLESIA E, APESTEGUIA C R. Structure and surface and catalytic properties of Mg-Al basic oxides[J]. J Catal, 1998,178(2):499-510. doi: 10.1006/jcat.1998.2161

    21. [21]

      ZHANG Jun, WANG Xiu-zhi, ZAHO Ning, XIAO Fu-kui, WEI wei, SUN Yu-han. Application of fluorine-modified Ni-Mg-Al hydrotalcite catalyst in the partial oxidation of methane to syngas[J]. J Fuel Chem Technol, 2012,40(4):424-429.  

    22. [22]

      LIU Y X, SUN K P, MA H W, XU X L, WANG X L. Zr-incorporated hydrotalcites and their application in the synthesis of isophorone[J]. Catal Commun, 2010,11(10):880-883. doi: 10.1016/j.catcom.2010.03.014

  • 加载中
    1. [1]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    2. [2]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    3. [3]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    4. [4]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    5. [5]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    6. [6]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    7. [7]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    8. [8]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    9. [9]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    10. [10]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    11. [11]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    12. [12]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    13. [13]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    14. [14]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    15. [15]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    16. [16]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    17. [17]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    18. [18]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    19. [19]

      Wanchun Zhu Yongmei Liu Li Wang Yunshan Bai Shu'e Song Xiaokui Wang Zhongyun Wu Hong Yuan Yunchao Li Fuping Tian Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Temperature. University Chemistry, 2025, 40(5): 128-136. doi: 10.12461/PKU.DXHX202503028

    20. [20]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

Metrics
  • PDF Downloads(10)
  • Abstract views(1197)
  • HTML views(104)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return