Citation: Jingshuo Gao, Shuhan Yang, Ye Dong, Guofeng Chen. Research Advance of Coumarin-Based Fluorescent Probes for Recognition of Hg2+[J]. Chemistry, ;2021, 84(5): 441-449, 440. shu

Research Advance of Coumarin-Based Fluorescent Probes for Recognition of Hg2+

  • Corresponding author: Guofeng Chen, chenguofeng@hbu.cn
  • Received Date: 18 September 2020
    Accepted Date: 4 November 2020

Figures(26)

  • This paper summarizes the research progresses in the field of Hg2+-fluorescent probes based on coumarin during the past ten years. The molecular structure, design principle and application performance of this kind of probes are briefly introduced. The sensitivity, selectivity and detection conditions in the application process are evaluated. Finally, the research and development direction of coumarin-based fluorescent probes for Hg2+ are prospected.
  • 加载中
    1. [1]

      Carvalho C M L, Chew E H, Hashemy S I, et al. J. Biol. Chem., 2008, 283(18): 11913~11923. 

    2. [2]

      Nolan E M, Lippard S J. Chem. Rev., 2008, 108(9): 3443~3480. 

    3. [3]

      Harris H H, Pickering I J, George G N. Science, 2003, 301(5637): 1203~1203. 

    4. [4]

      Renzoni A, Zino F, Franchi E. Environ. Res., 1998, 77(2): 68~72. 

    5. [5]

      Grandjean P, Weihe P, White R F, et al. Environ. Res., 1998, 77(2): 165~172. 

    6. [6]

      Zhao Q, Cao T Y, Li F Y, et al. Organometallics, 2007, 26(8): 2077~2081. 

    7. [7]

       

    8. [8]

      Alamin M B, Bejey A M, Kučera J, et al. J. Radioanal. Nucl. Chem., 2006, 270(1): 143~146. 

    9. [9]

       

    10. [10]

      Zhang, Z F, Chen S Y, Yu H M, et al. Anal. Chim. Acta, 2004, 513(2): 417~423. 

    11. [11]

      Saban S B, Darling R B. Sens. Actuat. B, 1999, 61(1-3): 128~137. 

    12. [12]

      de Silva A P, Gunaratne H Q N, Gunnlaugsson T, et al. Chem. Rev., 1997, 97(5): 1515~1566. 

    13. [13]

      Joseph R, Rao C P. Chem. Rev., 2011, 111(8): 4658~4702. 

    14. [14]

       

    15. [15]

      Song Y X, Chen Z, Li H Q. Curr. Org. Chem., 2012, 16(22): 2690~2707. 

    16. [16]

       

    17. [17]

      Voutsadaki S, Tsikalas G K, Klontzas E, et al. Chem. Commun., 2010, 46(19): 3292~3294. 

    18. [18]

      Guha S, Lohar S, Hauli I, et al. Talanta, 2011, 85(3): 1658~1664. 

    19. [19]

      Bazzicalupi C, Caltagirone C, Cao Z F, et al. Chem. Eur. J., 2013, 19(43): 14639~14653. 

    20. [20]

      Yan L Q, Li X M, Li J P. ChemistrySelect, 2018, 3(36): 10157~10163. 

    21. [21]

      Nguyen T H, Sun T, Grattan K T V, et al. Sensors, 2019, 19(9): 2142~2154. 

    22. [22]

      Kim H J, Kim Y, Kim S J, et al. Bull. Korean Chem. Soc., 2010, 31(1): 230~233. 

    23. [23]

      Ma Q J, Zhang X B, Zhao X H, et al. Anal. Chim. Acta, 2010, 663(1): 85~90. 

    24. [24]

       

    25. [25]

      Zhou Y, Chu K H, Zhen H F, et al. Spectroc. Acta A, 2013, 106: 197~202. 

    26. [26]

      Wang M, Wen J, Qin Z H, et al. Dyes Pigments, 2015, 120: 208~212. 

    27. [27]

      Acharyya S, Gharami S, Patra L, et al. J. Fluoresc., 2017, 27(6): 2051~2057. 

    28. [28]

       

    29. [29]

      Yang S H, Yang W G, Guo Q R, et al. Tetrahedron, 2014, 70(46): 8914~8918. 

    30. [30]

      Guo Y, An J, Tang H Y, et al. Mater. Res. Bull., 2015, 63: 155~163. 

    31. [31]

      Cheng X H, Qu S H, Xiao L, et al. J. Photochem. Photobiol. A, 2018, 364: 503~509. 

    32. [32]

      Yang Y S, Zheng D J, Xu Y J, et al. Anal. Sci., 2018, 34(12): 1411~1417. 

    33. [33]

      Pan S L, Li K, Li L L, et al. Chem. Commun., 2018, 54(39): 4955~4958. 

    34. [34]

      Ding Y, Pan Y M, Han Y F. Ind. Eng. Chem. Res., 2019, 58(19): 7786~7793. 

    35. [35]

      Tsukamoto K, Shinohara Y, Iwasaki S, et al. Chem. Commun., 2011, 47(17): 5073~5075. 

    36. [36]

      Chen J H, Liu W M, Wang Y, et al. Tetrahed. Lett., 2013, 54(48): 6447~6449. 

    37. [37]

      Zhou H W, Tian W, Jiang M, et al. Anal. Sci., 2015, 31(12): 1285~1289. 

    38. [38]

      Qin S Y, Chen B, Huang J, et al. New J. Chem., 2018, 42(15): 12766~12772. 

    39. [39]

      Gu L, Zheng T, Xu Z X, et al. Spectroc. Acta A, 2019, 207: 88~95. 

    40. [40]

      Aliaga M E, Gazitua M, Rojas-Bolaños A, et al. Spectroc. Acta A, 2020, 224: 117372~117379. 

    41. [41]

      Cho Y S, Ahn K H. Tetrahed. Lett., 2010, 51(29): 3852~3854. 

    42. [42]

      Wu C J, Wang J B, Shen J J, et al. Sens. Actuat. B, 2017, 243: 678~683. 

    43. [43]

      H Lee, H J Kim. Tetrahed. Lett., 2011, 52(37): 4775~4778. 

    44. [44]

      Duan X L, Gu B, Zhou Q L, et al. J. Iran. Chem. Soc., 2017, 14: 1207~1214. 

    45. [45]

      Li Q, Hu Y, Hou H N, et al. Inorg. Chim. Acta, 2018, 471: 705~708. 

    46. [46]

      Pang B J, Li Q, Li C R, et al. J. Lumines., 2019, 205: 446~450. 

    47. [47]

      Jiao Y, Liu X, Zhou L, et al. Sens. Actuat. B, 2017, 247: 950~956. 

    48. [48]

      Chen C C, Vijay N, Thirumalaivasan N, et al. Spectroc. Acta A, 2019, 219: 135~140. 

    49. [49]

      Ghosh A C, Schulzke C. Inorg. Chim. Acta, 2016, 445: 149~154. 

    50. [50]

      Gao Y L, Zhang C, Peng S W, et al. Sens. Actuat. B, 2017, 238: 455~461. 

  • 加载中
    1. [1]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    2. [2]

      Jie ZhouChuanxiang ZhangChangchun HuShuo LiYuan LiuZhu ChenSong LiHui ChenRokayya SamiYan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561

    3. [3]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    4. [4]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    5. [5]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    6. [6]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    7. [7]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    8. [8]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    9. [9]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    10. [10]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    11. [11]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    12. [12]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    13. [13]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    14. [14]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    15. [15]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    16. [16]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    17. [17]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    18. [18]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    19. [19]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    20. [20]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

Metrics
  • PDF Downloads(12)
  • Abstract views(2541)
  • HTML views(387)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return