Citation: Jia Yinnan, Tian Hua, He Junhui, Feng Lili. Progress in Enrichment and Separation of HCH and Mercury in Water System[J]. Chemistry, ;2019, 82(10): 878-885. shu

Progress in Enrichment and Separation of HCH and Mercury in Water System

Figures(9)

  • Efficient enrichment and separation of pollutants are the key technologies for sample pretreatment, but usually the bottle-neck steps due to the complex of environmental samples and extremely low concentrations of pollutants. In this review, we introduce the recent and important progress regarding the developed materials for the enrichment and separation of representative aqueous contaminants:HCH and mercury. In addition, the existing problems of these environmental nanomaterials for enriching and separating pollutants are proposed. The future challenges of environmental nanomaterials are discussed as well.
  • 加载中
    1. [1]

       

    2. [2]

      G Yu, W Zhang, Q Zhao et al. Sens. Actuat. B, 2016, 235:439~446. 

    3. [3]

      Z Yang, H Li, S Feng et al. Langmuir, 2018, 34(30):8739~8749. 

    4. [4]

      H Xu, Z Qu, C Zong et al. Environ. Sci. Technol., 2015, 49(11):6823~6830. 

    5. [5]

       

    6. [6]

      A Durimel, N Passé-Coutrin, C Jean-Marius et al. RSC Adv., 2015, 5(103):85153~85164. 

    7. [7]

      T H Sun, J P Jia, D J Zhong et al. Anal. Sci., 2006, 22(2):293~298. 

    8. [8]

      W A El-Said, D M Fouad, M H Ali et al. Int. J. Environ. Sci. Technol., 2018, 15(8):1731~1744. 

    9. [9]

      S Memon, S Memon, N Memon. Desalin. Water Treat., 2014, 52(13-15):2572~2582. 

    10. [10]

      S Sen Gupta, I Chakraborty, S M Maliyekkal et al. ACS Sustain. Chem. Eng., 2015, 3(6):1155~1163. 

    11. [11]

      H R Nodeh, W A W Ibrahim, M A Kamboh et al. RSC Adv., 2015, 5(93):76424~76434. 

    12. [12]

      X Huang, G Liu, D Xu et al. Appl. Sci., 2018, 8(6):959. 

    13. [13]

      F Liu, H Tian, J He. J. Colloid Interf. Sci., 2014, 419:68~72. 

    14. [14]

      H Tian, F Liu, J He. J. Colloid Interf. Sci., 2014, 431:90~96. 

    15. [15]

      H Tian, J Chen, J He et al. J. Colloid Interf. Sci., 2015, 457:195~202.

    16. [16]

      Y Liu, Z Gao, R Wu et al. J. Chromatogr. A, 2017, 1479:55~61. 

    17. [17]

       

    18. [18]

      M Zabihi, A Ahmadpour, A H Asl. J. Hazard. Mater., 2009, 167(1~3):230~236. 

    19. [19]

      H Tian, J Li, L Zou et al. J. Chem. Technol. Biotechnol., 2009, 84(4):490~496. 

    20. [20]

      X Du, J He. Dalton Transac., 2010, 39(38):9063~9072. 

    21. [21]

      H Chen, J He, H Tang et al. Chem. Mater., 2008, 20(18):5894~5900. 

    22. [22]

      H Chen, J He. Dalton Transac., 2009, (33):6651~6555. 

    23. [23]

      M A O Lourenço, P Figueira, E Pereira et al. Chem. Eng. J., 2017, 322:263~274. 

    24. [24]

      C Fischer, M Oschatz, W Nickel et al. Chem. Commun., 2017, 53(35):4845~4848. 

    25. [25]

      D Saha, S Barakat, S E van Bramer et al. ACS Appl. Mater. Interf., 2016, 8(49):34132~34142. 

    26. [26]

      J S M Lee, D J Parker, A I Cooper et al. J. Mater. Chem. A, 2017, 5(35):18603~18609. 

    27. [27]

      V Chandra, K S Kim. Chem. Commun., 2011, 47(13):3942~3944. 

    28. [28]

      F S Awad, K M AbouZeid, W M A El-Maaty et al. ACS Appl. Mater. Interf. 2017, 9(39):34230~34242. 

    29. [29]

      J Zhu, B Z Zhao, Y Qi et al. Sens. Actuat. B, 2018, 255:2927~2935. 

    30. [30]

      L Li, L Zhang, T Lou. Sens. Actuat. B, 2017, 252:663~670. 

    31. [31]

      Z Qu, L Fang, D Chen et al. Fuel, 2017, 203:128~134. 

    32. [32]

      S Ravi, P Puthiaraj, K H Row et al. Ind. Eng. Chem. Res., 2017, 56(36):10174~10182. 

    33. [33]

      D Xu, W D Wu, H J Qi et al. Chemosphere, 2018, 196:174~181. 

    34. [34]

      P Miretzky, A F Cirelli. J. Hazard. Mater., 2009, 167(1~3):10~23. 

    35. [35]

      H A Shawky, A H M El-Aassar, D E Abo-Zeid. J. Appl. Polym. Sci., 2012, 125(S1):E93~E101. 

    36. [36]

      X Sun, Q Li, L Yang et al. Particuology, 2016, 26:79~86. 

    37. [37]

      A Jaiswal, S. S Ghsoh, A Chattopadhyay. Langmuir, 2012, 28(44):15687~15696.

    38. [38]

      K Chauhan, P Singh, R K Singhal. ACS Appl. Mater. Interf., 2015, 7(47):26069~26078. 

    39. [39]

      L Xie, Z Yu, S M Islam et al. Adv. Funct. Mater., 2018, 28(20):1800502. 

    40. [40]

      K Ai, C Ruan, M Shen et al. Adv. Funct. Mater., 2016, 26(30):5542~5549. 

    41. [41]

      X Gui, J Wei, K Wang et al. Adv. Mater., 2010, 22(5):617~621. 

    42. [42]

      X Dong, J Chen, Y Ma et al. Chem. Commun., 2012, 48(86):10660~10662. 

    43. [43]

      B Chen, H Bi, Q Ma et al. Sci. Chin. Mater., 2017, 60(11):1102~1108. 

    44. [44]

      Y Sun, Y Liu, Z Lou et al. Chem. Eng. J., 2018, 344:616~624. 

    45. [45]

      I R Pala, S L Brock. ACS Appl. Mater. Interf., 2012, 4(4):2160~2167. 

    46. [46]

      S Y Jiang, W W He, S L Li et al. Inorg. Chem., 2018, 57(10):6118~6123. 

    47. [47]

      M Mon, X Qu, J Ferrando-Soria et al. J. Mater. Chem. A, 2017, 5(38):20120~20125. 

    48. [48]

      N D Rudd, H Wang, E M A Fuentes-Fernandez et al. ACS Appl. Mater. Interf., 2016, 8(44):30294~30303. 

    49. [49]

      Q Sun, B Aguila, J Perman et al. J. Am. Chem. Soc., 2017, 139(7):2786~2793. 

    50. [50]

      L Meri-Bofi, S Royuela, F Zamora et al. J. Mater. Chem. A, 2017, 5(34):17973~17981. 

  • 加载中
    1. [1]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    2. [2]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    3. [3]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    6. [6]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    7. [7]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    8. [8]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    9. [9]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    10. [10]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    11. [11]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    12. [12]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    13. [13]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    14. [14]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    15. [15]

      Peipei SunJinyuan ZhangYanhua SongZhao MoZhigang ChenHui Xu . Built-in Electric Fields Enhancing Photocarrier Separation and H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-0. doi: 10.3866/PKU.WHXB202311001

    16. [16]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    17. [17]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    18. [18]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    19. [19]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    20. [20]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

Metrics
  • PDF Downloads(0)
  • Abstract views(1722)
  • HTML views(130)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return