Citation: KANG Lei, WANG Hai-yan, SHAO He, SUN Na, WANG Yu-jia, YANG Zhan-xu. Study on the synthesis of composite NiO-ZnO nanowire adsorbent and its performance for desulfurization[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(5): 551-557. shu

Study on the synthesis of composite NiO-ZnO nanowire adsorbent and its performance for desulfurization

  • Corresponding author: WANG Hai-yan, fswhy@126.com
  • Received Date: 19 November 2017
    Revised Date: 23 February 2018

    Fund Project: the National Natural Science Foundation of China 21401093The project was supported by the National Natural Science Foundation of China (21401093) and Natural Science Foundation of Liaoning(201202126)Natural Science Foundation of Liaoning 201202126

Figures(10)

  • The composite NiO-ZnO nanowires for desulfurization were synthesized using hydrothermal method. The effects of the ratio of ethanol to water in the solvent used for the nanowire synthesis were studied. The phase structure and morphology of the nanowire adsorbents were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM). The desulfurization performance of the adsorbents were studied at the temperature of 350℃, pressure of 1.0 MPa, the volume space velocity of 6 h-1, and H2/oil volume ratio of 60. The results showed that the composite NiO-ZnO nanowire adsorbent has better morphology than others, the active catalytic site was determined to be Ni which seemed to have better dispersion and smaller particle size, and the Ni-Zn alloy preferred to desulfurization was formed, so its desulfurization performance was significantly improved. The desulfurization rate was increased up to 98%. After five circles of regeneration, the activity of the composite NiO-ZnO nanowire adsorbent can still maintain 90 h, which indicated that it possesses better reusability.
  • 加载中
    1. [1]

      ULLAH R, BAI P, WU P, ETIM U J, ZHANG Z, HAN D, SUBHAN F, ULLAH S, ROOD M, YAN Z F. Superior performance of freeze-dried Ni/ZnO-Al2O3 adsorbent in the ultra-deep desulfurization of high sulfur model gasoline[J]. Fuel Process Technol, 2017,156:505-514. doi: 10.1016/j.fuproc.2016.10.022

    2. [2]

      KONG A H, WEI Y Y, LI Y H. Reactive adsorption desulfurization over a Ni/ZnO adsorbent prepared by homogeneous precipitation[J]. Front Chem Sci Eng, 2013,7(2):170-176. doi: 10.1007/s11705-013-1322-9

    3. [3]

      WANG Guang-jian, LI Jia-jia, WU Chun-ze, WANG Fang. Study on the preparation of TiO2-Al2O3 composite support and its application in Co-Mo/TiO2-Al2O3 catalyst for hydro-desulfurization[J]. J Fuel Chem Technol, 2016,44(12):1518-1522. doi: 10.3969/j.issn.0253-2409.2016.12.016 

    4. [4]

      AHMEDZEKI N S, ALHUSSAINI M M, ALNAAMA A A J, ALBAYATI I S. Reactive adsorption desulfurization by nanocrystalline ZnO/Zeolite a molecular sieves[J]. J Eng, 2017,23(9):38-49.  

    5. [5]

      TAWARA K, NISHIMURA T, IWANAMI H, NISHIMOTO T, HASUIKE T. New hydrodesulfurization catalyst for petroleum-fed fuel cell vehicles and cogenerations[J]. Ind Eng Chem Res, 2001,40(10):2367-2370. doi: 10.1021/ie000453c

    6. [6]

      GE H, TANG M, WEN X D. Ni/ZnO nano sorbent for reactive adsorption desulfurization of refinery oil streams[J]. IGI Global, 2016:216-239.  

    7. [7]

      HUANG L, QIN Z, WANG G, DU M, GE H, LI X, WANG J. A detailed study on the negative effect of residual sodium on the performance of Ni/ZnO adsorbent for diesel fuel desulfurization[J]. Ind Eng Chem Res, 2010,49(10):4670-4675. doi: 10.1021/ie100293h

    8. [8]

      REN Z, GUO Y, WROBEL G, KNECHT D A, ZHANG Z, GAO H, GAO P X. Three dimensional koosh ball nanoarchitecture with a tunable magnetic core, fluorescent nanowire shell and enhanced photocatalytic property[J]. J Mater Chem, 2012,22(14):6862-6868. doi: 10.1039/c2jm16489b

    9. [9]

      JIAN D, GAO P X, CAI W, ALLIMI B S, ALPAY S P, DING Y, BROOKS C. Synthesis, characterization, and photocatalytic properties of ZnO/(La, Sr) CoO3 composite nanorod arrays[J]. J Mater Chem, 2009,19(7):970-975. doi: 10.1039/b817235h

    10. [10]

      REN Z, BOTU V, WANG S, MENG Y, SONG W, GUO Y, GAO P X. Monolithically integrated spinel MxCo3-xO4 (M=Co, Ni, Zn) nanoarray catalysts:Scalable synthesis and cation manipulation for tunable low-temperature CH4 and CO oxidation[J]. Angew Chem Int Edit, 2014,53(28):7223-7227. doi: 10.1002/anie.201403461

    11. [11]

      WANG S, WU Y, MIAO R, ZHANG M, LU X, ZHANG B, SIUB S L. Scalable continuous flow synthesis of ZnO nanorod arrays in 3-D ceramic honeycomb substrates for low-temperature desulfurization[J]. Crystengcomm, 2017,19(34):5128-5136. doi: 10.1039/C7CE00921F

    12. [12]

      YANG P, YAN H, MAO S, RUSSO R, JOHNSON J, SAYKALLY R, CHOI H J. Controlled growth of ZnO nanowires and their optical properties[J]. Adv Funct Mater, 2002,12(5):323-331. doi: 10.1002/1616-3028(20020517)12:5<323::AID-ADFM323>3.0.CO;2-G

    13. [13]

      GUPTA M, HE J, NGUYEN T, PETZOLD F, FONSECA D, JASINSKI J B, SUNKARA M K. Nanowire catalysts for ultra-deep hydro-desulfurization and aromatic hydrogenation[J]. Appl Catal B:Environ, 2016,180:246-254. doi: 10.1016/j.apcatb.2015.06.029

    14. [14]

      PETZOLD F G, JASINSKI J, CLARK E L, KIM J, ABSHER J, TOUFAR H, SUNKARA M K. Nickel supported on zinc oxide nanowires as advanced hydrodesulfurization catalysts[J]. Catal Today, 2012,198(1):219-227. doi: 10.1016/j.cattod.2012.05.030

    15. [15]

      Xiang Qun, Pan Qing-yi, Xu Jian-qiang. Solvothermal synthesis of ZnO nanowires[J]. Chin J Inorg Chem, 2007,23(2):369-372.  

    16. [16]

      LI W J, SHI E W, ZHONG W Z, YIN Z W. Growth mechanism and growth habit of oxide crystals[J]. J Cryst Growth, 1999,203(1):186-196.  

    17. [17]

      KAR S, DEV A, CHAUDHURI S. Simple solvothermal route to synthesize ZnO nanosheets, nanonails, and well-aligned nanorod arrays[J]. J Phys Chem B, 2006,110(36):17848-17853. doi: 10.1021/jp0629902

    18. [18]

      ZHANG Z, SHAO C, LI X, WANG C, ZHANG M, LIU Y. Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity[J]. ACS Appl Mat Interfaces, 2010,2(10):2915-2923. doi: 10.1021/am100618h

    19. [19]

      YADAV R S, PANDEY A C, SANJAY S S. ZnO porous structures synthesized by CTAB-assisted hydrothermal process[J]. Struct Chem, 2007,18(6):1001-1004. doi: 10.1007/s11224-007-9251-1

    20. [20]

      ZONG Y, LI Z, WANG X, MA J, MEN Y. Synthesis and high photocatalytic activity of Eu-doped ZnO nanoparticles[J]. Ceram Int, 2014,40(7):10375-10382. doi: 10.1016/j.ceramint.2014.02.123

    21. [21]

      CASARIN, MACCATO, VITTADINI. An LCAO-LDF study of the chemisorption of H2O and H2S on ZnO(0001) and ZnO(1010)[J]. Surf Sci, 1997,377:587-591.  

    22. [22]

      ZHANG Y, YANG Y, HAN H, YANG M, WANG L, ZHANG Y, LI C. Ultra-deep desulfurization via reactive adsorption on Ni/ZnO:The effect of ZnO particle size on the adsorption performance[J]. Appl Catal B:Environ, 2012,119:13-19.  

    23. [23]

      BABICH I V, MOULIJN J A. Science and technology of novel processes for deep desulfurization of oil refinery streams:A review[J]. Fuel, 2003,82(6):607-631. doi: 10.1016/S0016-2361(02)00324-1

  • 加载中
    1. [1]

      Bing ShenTongwei YuanWenshuang ZhangYang ChenJiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490

    2. [2]

      Hengyi ZHULiyun JUHaoyue ZHANGJiaxin DUYutong XIELi SONGYachao JINMingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358

    3. [3]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    4. [4]

      Xiao-Qi Xu Yapei Wang . Practice of Cultivating Multi-Disciplinary Talents with Comprehensive Skills through Demand-Driven, Individualized Education, and Humanities and Science Integration. University Chemistry, 2024, 39(6): 90-97. doi: 10.3866/PKU.DXHX202311049

    5. [5]

      Hui Xiong Yan Wang Rongxian Bai Yongqi Wu Chengmei Liu Yuefa Gong Jian Zhang . Development of a Compound Talent Training System Based on Virtual Technology: a Case Study of Chemical Unit and Process Simulation Practices. University Chemistry, 2024, 39(10): 314-317. doi: 10.12461/PKU.DXHX202405071

    6. [6]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    7. [7]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    8. [8]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    9. [9]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    10. [10]

      Jie RenHao ZongYaqun HanTianyi LiuShufen ZhangQiang XuSuli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350

    11. [11]

      Qinghong PanHuafang ZhangQiaoling LiuDonghong HuangDa-Peng YangTianjia JiangShuyang SunXiangrong Chen . A self-powered cathodic molecular imprinting ultrasensitive photoelectrochemical tetracycline sensor via ZnO/C photoanode signal amplification. Chinese Chemical Letters, 2025, 36(1): 110169-. doi: 10.1016/j.cclet.2024.110169

    12. [12]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    13. [13]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    14. [14]

      Bin FengTao LongRuotong LiYuan-Li Ding . Rationally constructing metallic Sn-ZnO heterostructure via in-situ Mn doping for high-rate Na-ion batteries. Chinese Chemical Letters, 2025, 36(2): 110273-. doi: 10.1016/j.cclet.2024.110273

    15. [15]

      Pengyu ChenBeibei ChenMan HeYuxi ZhouLei LeiJian HanBingsheng ZhouLigang HuBin Hu . Nanoplastics and nano-ZnO facilitate Cd accumulation in zebrafish larvae via a distinct pathway: Revelation by LA-ICP-MS imaging. Chinese Chemical Letters, 2025, 36(2): 109908-. doi: 10.1016/j.cclet.2024.109908

    16. [16]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    17. [17]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    18. [18]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    19. [19]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    20. [20]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

Metrics
  • PDF Downloads(4)
  • Abstract views(719)
  • HTML views(107)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return