Performance of Ni-Smx/SiC catalysts for CO2 reforming of CH4
- Corresponding author: JIN Guo-qiang, gqjin@sxicc.ac.cn
Citation:
WANG Bing, GUO Cong-xiu, WANG Ying-yong, JIN Guo-qiang, GUO Xiang-yun. Performance of Ni-Smx/SiC catalysts for CO2 reforming of CH4[J]. Journal of Fuel Chemistry and Technology,
;2016, 44(5): 587-596.
WANG Li, AO Xian-quan, WANG Shi-han. Catalysts for carbon dioxide catalytic reforming of methane to synthesis gas[J]. Prog Chem, 2012,24(9):1696-1706.
YANG R Q, XING C, LV C X, SHI L, TSUBAKI N. Promotional effect of La2O3 and CeO2 on Ni/gamma-Al2O3 catalysts for CO2 reforming of CH4[J]. Appl Catal A: Gen, 2010,385(1/2):92-100.
AMIN M H, MANTRI K, NEWNHAM J, TARDIO J. Highly stable ytterbium promoted Ni/gamma-Al2O3 catalysts for carbon dioxide reforming of methane[J]. Appl Catal B: Environ, 2012,119:217-226.
GUO J J, LOU H, ZHAO H, CHAI D F, ZHENG X M. Dry reforming of methane over nickel catalysts supported on magnesium aluminate spinels[J]. Appl Catal A: Gen, 2004,273(1/2):75-82.
SARKAR B, TIWARI R, SINGHA R K, SUMAN S, GHOSH S, ACHARYYA S S, MANTRI K, KONATHALA L N S, PENDEM C, BAL R. Reforming of methane with CO2 over Ni nanoparticle supported on mesoporous ZSM-5[J]. Catal Today, 2012,198(1):209-214. doi: 10.1016/j.cattod.2012.04.029
ZHANG Z L, VERYKIOS X E, MACDONALD S M, AFFROSSMAN S. Comparative study of carbon dioxide reforming of methane to synthesis gas over Ni/La2O3 and conventional nickel-based catalysts[J]. J Phys Chem, 1996,100:744-754. doi: 10.1021/jp951809e
SUN W Z, JIN G Q, GUO X Y. Partial oxidation of methane to syngas over Ni/SiC catalysts[J]. Catal Commun, 2005,6(2):135-139. doi: 10.1016/j.catcom.2004.11.013
LIU H T, LI S Q, ZHANG S B, WANG J M, ZHOU G J, CHEN L, WANG X L. Catalytic performance of novel Ni catalysts supported on SiC monolithic foam in carbon dioxide reforming of methane to synthesis gas[J]. Catal Commun, 2008,9(1):51-54. doi: 10.1016/j.catcom.2007.05.002
WANG Q, SUN W Z, JIN G Q, WANG Y Y, GUO X Y. Biomorphic SiC pellets as catalyst support for partial oxidation of methane to syngas[J]. Appl Catal B: Environ, 2008,79(4):307-312. doi: 10.1016/j.apcatb.2007.10.032
ZHANG W D, LIU B S, ZHAN Y P, TIAN T L. Syngas production via CO2 reforming of methane over Sm2O3-La2O3-supported Ni catalyst[J]. Ind Eng Chem Res, 2009,48:7498-7504. doi: 10.1021/ie9001298
GUO Peng-fei, JIN Guo-qiang, GUO Chong-xiu, WANG Ying-yong, TONG Xi-li, GUO Xiang-yun. Effect of Yb2O3 promotor on the performance of Ni/SiC catalysts in CO2 reforming of CH4[J]. J Fuel Chem Technol, 2014,42(6):719-726. doi: 10.1016/S1872-5813(14)60033-5
ZHI G J, GUO X N, WANG Y Y, GUO X Y. Effect of La2O3 modification on the catalytic performance of Ni/SiC for methanation of carbon dioxide[J]. Catal Commun, 2011,16(1):56-59. doi: 10.1016/j.catcom.2011.08.037
ZHANG W D, LIU B S, TIAN Y L. CO2 reforming of methane over Ni/Sm2O3-CaO catalyst prepared by a sol-gel technique[J]. Catal Commun, 2007,8(4):661-667. doi: 10.1016/j.catcom.2006.08.020
JIN G Q, GUO X Y. Synthesis and characterization of mesoporous silicon carbide[J]. Microporous Mesoporous Mater, 2003,60(1/3):207-212.
FANG L, HUANG X P, VIDAL-IGLESIAS F J, LIU Y P, WANG X L. Preparation, characterization and catalytic performance of a novel Pt/SiC[J]. Electrochem Commun, 2011,13(12):1309-1312. doi: 10.1016/j.elecom.2011.07.023
GUO J Z, HOU X Y, GAO J, ZHENG X M. Syngas production via combined oxy-CO2 reforming of methane over Gd2O3-modified Ni/SiO2 catalysts in a fluidized-bed reactor[J]. Fuel, 2008,87(7):1348-1354. doi: 10.1016/j.fuel.2007.06.018
LIU B S, AU C Y. Carbon deposition and catalyst stability over La2NiO4/γ-Al2O3 during CO2 reforming of methane to syngas[J]. Appl Catal A: Gen, 2003,244(1):181-195. doi: 10.1016/S0926-860X(02)00591-4
YU M J, ZHU K, XIAO H P, DENG W, ZHOU X G. Carbon dioxide reforming of methane over promoted NixMg1-xO (111) platelet catalyst derived from solvothermal synthesis[J]. Appl Catal B: Enviorn, 2014,148-149:177-190. doi: 10.1016/j.apcatb.2013.10.046
STAMATIN S N, SPEDER J, DHIMAN R, ARENZ M, SKOU E S. Electrochemical stability and postmortem studies of Pt/SiC catalysts for polymer electrolyte membrane fuel cells[J]. Acs Appl Mater Interfaces, 2015,7(11):6153-6161. doi: 10.1021/am508982d
LI J F, XIA C, AU C T, LIU B S. Y2O3-promoted NiO/SBA-15 catalysts highly active for CO2/CH4 reforming[J]. Int J Hydrogen Energy, 2014,39(21):10927-10940. doi: 10.1016/j.ijhydene.2014.05.021
GÓMEZ-SAINERO L M, BAKER R T, METCALFE I S, SAHIBZADA M, LOPEZ-NIETO J M. Investigation of Sm2O3-CeO2-supported palladium catalysts for the reforming of methanol: The role of the support[J]. Appl Catal A: Gen, 2005,294(2):177-187. doi: 10.1016/j.apcata.2005.07.022
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
Shitao Fu , Jianming Zhang , Cancan Cao , Zhihui Wang , Chaoran Qin , Jian Zhang , Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059
Bo YANG , Gongxuan LÜ , Jiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
Renqing Lü , Shutao Wang , Fang Wang , Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
Xiaoning TANG , Junnan LIU , Xingfu YANG , Jie LEI , Qiuyang LUO , Shu XIA , An XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
Xuewei BA , Cheng CHENG , Huaikang ZHANG , Deqing ZHANG , Shuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7∶xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096
Baitong Wei , Jinxin Guo , Xigong Liu , Rongxiu Zhu , Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003
Zeyi Yan , Ruitao Liu , Xinyu Qi , Yuxiang Zhang , Lulu Sun , Xiangyuan Li , Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
Ru SONG , Biao WANG , Chunling LU , Bingbing NIU , Dongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397
Yun-Fei Zhang , Chun-Hui Zhang , Jian-Hui Xu , Lei Li , Dan Li , Jin-Hong Fan , Jiale Gao , Xin Quan , Qi Wu , Yue Zou , Yan-Ling Liu . Enhanced degradation of florfenicol by microscale SiC/Fe: Dechlorination via hydrogenolysis. Chinese Chemical Letters, 2024, 35(7): 109385-. doi: 10.1016/j.cclet.2023.109385
reaction conditions: temperature=800 ℃, GHSV=10 000 mL/(g·h), CH4/CO2(molar ratio)=1.0
(a): CH4 conversion; (b): CO2 conversion; (c): H2 selectivity; (d): CO selectivity
reaction conditions: temperature=800 ℃, CH4/CO2(molar ratio)=1.0
reaction conditions: temperature=800 ℃, GHSV=10 000 mL/(g·h), CH4/CO2(molar ratio)=1.0
(a): Ni 2p of Ni-Sm0/SiC; (b): Ni 2p of Ni-Sm5/SiC; (c): C 1s of Ni-Sm0/SiC; (d): C 1s of Ni-Sm5/SiC; (e): Sm 3d of Ni-Sm5/SiC
(a): Ni 2p of Ni-Sm0/SiC; (b): Ni 2p of Ni-Sm5/SiC; (c): C 1s of Ni-Sm0/SiC; (d): C 1s of Ni-Sm5/SiC; (e): Sm 3d of Ni-Sm5/SiC