Citation: WANG Bing, GUO Cong-xiu, WANG Ying-yong, JIN Guo-qiang, GUO Xiang-yun. Performance of Ni-Smx/SiC catalysts for CO2 reforming of CH4[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(5): 587-596. shu

Performance of Ni-Smx/SiC catalysts for CO2 reforming of CH4

  • Corresponding author: JIN Guo-qiang, gqjin@sxicc.ac.cn
  • Received Date: 17 November 2015
    Revised Date: 1 February 2016

    Fund Project: the Major State Basic Research Development Program of China 2011CB201405the Major State Basic Research Development Program of China 973 program

Figures(10)

  • Ni-Smx/SiC (x=0, 2%, 3%, 4%, 5%, 7%) catalysts were prepared by impregnation method, and the performance of catalysts for carbon dioxide reforming of methane were tested in a fixed bed reactor. The catalysts were characterized by BET, ICP, XRD, H2-TPR, TG-DTA, XPS and TEM. The results showed that Ni-Sm5/SiC had excellent catalytic activity and stability, and the least amount of coke deposition. The addition of samarium effectively enhanced the interaction of metal active component and support, and reduced the formation of coke and therefore improved the catalyst stability.
  • 加载中
    1. [1]

      WANG Li, AO Xian-quan, WANG Shi-han. Catalysts for carbon dioxide catalytic reforming of methane to synthesis gas[J]. Prog Chem, 2012,24(9):1696-1706.  

    2. [2]

      YANG R Q, XING C, LV C X, SHI L, TSUBAKI N. Promotional effect of La2O3 and CeO2 on Ni/gamma-Al2O3 catalysts for CO2 reforming of CH4[J]. Appl Catal A: Gen, 2010,385(1/2):92-100.  

    3. [3]

      AMIN M H, MANTRI K, NEWNHAM J, TARDIO J. Highly stable ytterbium promoted Ni/gamma-Al2O3 catalysts for carbon dioxide reforming of methane[J]. Appl Catal B: Environ, 2012,119:217-226.  

    4. [4]

      GUO J J, LOU H, ZHAO H, CHAI D F, ZHENG X M. Dry reforming of methane over nickel catalysts supported on magnesium aluminate spinels[J]. Appl Catal A: Gen, 2004,273(1/2):75-82.  

    5. [5]

      SARKAR B, TIWARI R, SINGHA R K, SUMAN S, GHOSH S, ACHARYYA S S, MANTRI K, KONATHALA L N S, PENDEM C, BAL R. Reforming of methane with CO2 over Ni nanoparticle supported on mesoporous ZSM-5[J]. Catal Today, 2012,198(1):209-214. doi: 10.1016/j.cattod.2012.04.029

    6. [6]

      ZHANG Z L, VERYKIOS X E, MACDONALD S M, AFFROSSMAN S. Comparative study of carbon dioxide reforming of methane to synthesis gas over Ni/La2O3 and conventional nickel-based catalysts[J]. J Phys Chem, 1996,100:744-754. doi: 10.1021/jp951809e

    7. [7]

      SUN W Z, JIN G Q, GUO X Y. Partial oxidation of methane to syngas over Ni/SiC catalysts[J]. Catal Commun, 2005,6(2):135-139. doi: 10.1016/j.catcom.2004.11.013

    8. [8]

      LIU H T, LI S Q, ZHANG S B, WANG J M, ZHOU G J, CHEN L, WANG X L. Catalytic performance of novel Ni catalysts supported on SiC monolithic foam in carbon dioxide reforming of methane to synthesis gas[J]. Catal Commun, 2008,9(1):51-54. doi: 10.1016/j.catcom.2007.05.002

    9. [9]

      WANG Q, SUN W Z, JIN G Q, WANG Y Y, GUO X Y. Biomorphic SiC pellets as catalyst support for partial oxidation of methane to syngas[J]. Appl Catal B: Environ, 2008,79(4):307-312. doi: 10.1016/j.apcatb.2007.10.032

    10. [10]

      ZHANG W D, LIU B S, ZHAN Y P, TIAN T L. Syngas production via CO2 reforming of methane over Sm2O3-La2O3-supported Ni catalyst[J]. Ind Eng Chem Res, 2009,48:7498-7504. doi: 10.1021/ie9001298

    11. [11]

      GUO Peng-fei, JIN Guo-qiang, GUO Chong-xiu, WANG Ying-yong, TONG Xi-li, GUO Xiang-yun. Effect of Yb2O3 promotor on the performance of Ni/SiC catalysts in CO2 reforming of CH4[J]. J Fuel Chem Technol, 2014,42(6):719-726. doi: 10.1016/S1872-5813(14)60033-5 

    12. [12]

      ZHI G J, GUO X N, WANG Y Y, GUO X Y. Effect of La2O3 modification on the catalytic performance of Ni/SiC for methanation of carbon dioxide[J]. Catal Commun, 2011,16(1):56-59. doi: 10.1016/j.catcom.2011.08.037

    13. [13]

      ZHANG W D, LIU B S, TIAN Y L. CO2 reforming of methane over Ni/Sm2O3-CaO catalyst prepared by a sol-gel technique[J]. Catal Commun, 2007,8(4):661-667. doi: 10.1016/j.catcom.2006.08.020

    14. [14]

      JIN G Q, GUO X Y. Synthesis and characterization of mesoporous silicon carbide[J]. Microporous Mesoporous Mater, 2003,60(1/3):207-212.  

    15. [15]

      FANG L, HUANG X P, VIDAL-IGLESIAS F J, LIU Y P, WANG X L. Preparation, characterization and catalytic performance of a novel Pt/SiC[J]. Electrochem Commun, 2011,13(12):1309-1312. doi: 10.1016/j.elecom.2011.07.023

    16. [16]

      GUO J Z, HOU X Y, GAO J, ZHENG X M. Syngas production via combined oxy-CO2 reforming of methane over Gd2O3-modified Ni/SiO2 catalysts in a fluidized-bed reactor[J]. Fuel, 2008,87(7):1348-1354. doi: 10.1016/j.fuel.2007.06.018

    17. [17]

      LIU B S, AU C Y. Carbon deposition and catalyst stability over La2NiO4/γ-Al2O3 during CO2 reforming of methane to syngas[J]. Appl Catal A: Gen, 2003,244(1):181-195. doi: 10.1016/S0926-860X(02)00591-4

    18. [18]

      YU M J, ZHU K, XIAO H P, DENG W, ZHOU X G. Carbon dioxide reforming of methane over promoted NixMg1-xO (111) platelet catalyst derived from solvothermal synthesis[J]. Appl Catal B: Enviorn, 2014,148-149:177-190. doi: 10.1016/j.apcatb.2013.10.046

    19. [19]

      STAMATIN S N, SPEDER J, DHIMAN R, ARENZ M, SKOU E S. Electrochemical stability and postmortem studies of Pt/SiC catalysts for polymer electrolyte membrane fuel cells[J]. Acs Appl Mater Interfaces, 2015,7(11):6153-6161. doi: 10.1021/am508982d

    20. [20]

      LI J F, XIA C, AU C T, LIU B S. Y2O3-promoted NiO/SBA-15 catalysts highly active for CO2/CH4 reforming[J]. Int J Hydrogen Energy, 2014,39(21):10927-10940. doi: 10.1016/j.ijhydene.2014.05.021

    21. [21]

      GÓMEZ-SAINERO L M, BAKER R T, METCALFE I S, SAHIBZADA M, LOPEZ-NIETO J M. Investigation of Sm2O3-CeO2-supported palladium catalysts for the reforming of methanol: The role of the support[J]. Appl Catal A: Gen, 2005,294(2):177-187. doi: 10.1016/j.apcata.2005.07.022

  • 加载中
    1. [1]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    2. [2]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    3. [3]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    4. [4]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    5. [5]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    7. [7]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    8. [8]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    9. [9]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    10. [10]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    11. [11]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    12. [12]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    13. [13]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    14. [14]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    15. [15]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    16. [16]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    17. [17]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    18. [18]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    19. [19]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    20. [20]

      Yun-Fei ZhangChun-Hui ZhangJian-Hui XuLei LiDan LiJin-Hong FanJiale GaoXin QuanQi WuYue ZouYan-Ling Liu . Enhanced degradation of florfenicol by microscale SiC/Fe: Dechlorination via hydrogenolysis. Chinese Chemical Letters, 2024, 35(7): 109385-. doi: 10.1016/j.cclet.2023.109385

Metrics
  • PDF Downloads(2)
  • Abstract views(2452)
  • HTML views(187)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return