Citation: CUI Wei-yi, WANG Xi-yue, TAN Nai-di. Effect of calcination temperature on catalytic performance of Pt-FeOx/γ-Al2O3 catalysts for HCHO oxidation[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(8): 964-972. shu

Effect of calcination temperature on catalytic performance of Pt-FeOx/γ-Al2O3 catalysts for HCHO oxidation

  • Corresponding author: TAN Nai-di, tannd0119@163.com
  • Received Date: 28 March 2019
    Revised Date: 20 May 2019

    Fund Project: The project was supported by the National Science Foundation of China (51805207), 13th Five-Year Science and Technology Research and Planning Project of Education Department of Jilin province(JJKA20180559KJ) and Science and Technology Innovation Development Plan Project of Jilin(201750211)the National Science Foundation of China 5180520713th Five-Year Science and Technology Research and Planning Project of Education Department of Jilin province JJKA20180559KJScience and Technology Innovation Development Plan Project of Jilin 201750211

Figures(10)

  • A series of Pt-FeOx/γ-Al2O3 catalysts were prepared by colloid-deposition method and characterized by XRD, TEM, BET, XPS, H2-TPR and FT-IR to investigate the effects of calcination temperature on the surface structure of Pt-FeOx/γ-Al2O3 catalyst and its catalytic performance in catalytic HCHO oxidation. The characterization results showed that the applied calcination temperature greatly influenced the redox properties and chemical states of the Pt species, as well as the amount of surface hydroxyl groups. All resultant Pt-FeOx/γ-Al2O3 catalysts demonstrated activity in HCHO oxidation. The sample with calcination at 200 ℃ exhibited the best performance, which afforded 100% conversion of HCHO into CO2 and H2O at room temperature. The catalysts with lower calcination temperature should be beneficial to have a better valence distribution of Pt species and produce more accessible interface active sites like Pt-O-Fe species, thus endowing Pt-FeOx/γ-Al2O3 catalyst with relatively high activity for the oxidation of formaldehyde under mild conditions.
  • 加载中
    1. [1]

      SALTHAMMER T, MENTESE S, MARUTZKY R. Formaldehyde in the indoor environment[J]. Chem Rev, 2010,110(4):2536-2572. doi: 10.1021/cr800399g

    2. [2]

      CHI C C, CHEN W D, GUO M, WENG M L, YAN G, SHEN X Y. Law and features of TVOC and formaldehyde pollution in urban indoor air[J]. Atmos Environ, 2016,132(5):85-90.  

    3. [3]

      TANG X J, BAI Y, DUONG A, SMITH M T, LI L Y, ZHANG L P. Formaldehyde in China:Production, consumption, exposure levels, and health effects[J]. Environ Int, 2009,35(8):1210-1224. doi: 10.1016/j.envint.2009.06.002

    4. [4]

      MARSH G M, YOUK A O. Reevaluation of mortality risks from nasopharyngeal cancer in the formaldehyde cohort study of the national cancer institute[J]. Regul Toxicol Pharmacol, 2004,40(11):113-124.  

    5. [5]

      HUANG H B, XU Y, FENG Q Y, LEUNG D Y C. Low temperature catalytic oxidation of volatile organic compounds:A review[J]. Catal Sci Technol, 2015,5(2):2649-2669.  

    6. [6]

      NIE L H, YU J G, JARONIEC M, TAO F. Room-temperature catalytic oxidation of formaldehyde on catalysts[J]. Catal Sci Technol, 2016,6(11):3649-3669. doi: 10.1039/C6CY00062B

    7. [7]

      BAI Bing-yang, QIAO Qi, LI Jun-hua, HAO Ji-ming. Progress in research on catalysts for catalytic oxidation of formaldehyde[J]. Chin J Catal, 2016,37(1):102-122.  

    8. [8]

      ZHANG C B, LIU F D, ZHAI Y P, ARIGA H, YI N, LIU Y C, ASAKURA K, FLYTZANI-STEPHANOPOULOS M, HE H. Alkali-metal-promoted Pt/TiO2 opens a more efficient pathway to formaldehyde oxidation at ambient temperatures[J]. Angew Chem Int Ed, 2012,51(38):9628-9632. doi: 10.1002/anie.v51.38

    9. [9]

      XU Q L, LEI W Y, LI X Y, QI X Y, YU J G, LIU G, WANG J L, ZHANG P Y. Efficient removal of formaldehyde by nanosized gold on well-defined CeO2 nanorods at room temperature[J]. Environ Sci Technol, 2014,48(16):9702-9708. doi: 10.1021/es5019477

    10. [10]

      LI Y B, ZHANG C B, HE H, ZHANG J H, CHEN M. Influence of alkali metals on Pd/TiO2 catalysts for catalytic oxidation of formaldehyde at room temperature[J]. Catal Sci Technol, 2016,6(7):2289-2295. doi: 10.1039/C5CY01521A

    11. [11]

      MA L, WANG D S, LI J H, BAI B Y, FU L X, LI Y D. Ag/CeO2 nanospheres:Efficient catalysts for formaldehyde oxidation[J]. Appl Catal B:Environ, 2014,148/149(7):36-43.  

    12. [12]

      WANG J L, LI J G, JIANG C J, ZHOU P, ZHANG P Y, YU J G. The effect of manganese vacancy in birnessite-type MnO2 on room-temperature oxidation of formaldehyde in air[J]. Appl Catal B:Environ, 2017,204(5):147-155.  

    13. [13]

      XIA Y S, DAI H X, ZHANG L, DENG J G, HE H, AU C T. Ultrasound-assisted nanocasting fabrication and excellent catalytic performance of three-dimensionally ordered mesoporous chromia for the combustion of formaldehyde, acetone, and methanol[J]. Appl Catal B:Environ, 2010,100(10):229-237.  

    14. [14]

      WANG Z, WANG W Z, ZHANG L, JIANG D. Surface oxygen vacancies on Co3O4 mediated catalytic formaldehyde oxidation at room temperature[J]. Catal Sci Technol, 2016,6:3845-3853. doi: 10.1039/C5CY01709B

    15. [15]

      HUANG Y C, FAN W J, LONG B, LI H B. Alkali-modified non-precious metal 3D-NiCo2O4 nanosheets for efficient formaldehyde oxidation at low temperature[J]. J Mater Chem A, 2016,4(10):3648-3654. doi: 10.1039/C5TA09370H

    16. [16]

      CUI Wei-yi, HUI Ji-xing, TAN Nai-di. Research progress on catalytic oxidation of formaldehyde over supported platinum catalysts[J]. Chem Ind Eng Prog, 2017,36(10):3711-3719.  

    17. [17]

      GUO J H, LIN C X, JIANG C J, ZHANG P Y. Review on noble metal-based catalysts for formaldehyde oxidation at room temperature[J]. Appl Surf Sci, 2019,475:237-255. doi: 10.1016/j.apsusc.2018.12.238

    18. [18]

      AN N H, YU Q S, LIU G, LI S Y, JIA M J, ZHANG W X. Complete oxidation of formaldehyde at ambient temperature over supported Pt/Fe2O3 catalysts prepared by colloid-deposition method[J]. J Hazard Mater, 2011,186(10):1392-1397.  

    19. [19]

      XU Z H, YU J G, JARONIEC M. Efficient catalytic removal of formaldehyde at room temperature using AlOOH nanoflakes with deposited Pt[J]. Appl Catal B:Environ, 2015,163(2):306-312.  

    20. [20]

      YAN Z X, XU Z H, YU J G, JARONIEC M. Highly active mesoporous ferrihydrite supported Pt catalyst for formaldehyde removal at room temperature[J]. Environ Sci Technol, 2015,49(11):6637-6644. doi: 10.1021/acs.est.5b00532

    21. [21]

      CUI W Y, YUAN X L, WU P, ZHENG B, ZHANG W X, JIA M J. Catalytic properties of Al2O3 supported Pt-FeOx catalysts for complete oxidation of formaldehyde at ambient temperature[J]. RSC Adv, 2015,5(126):104330-104336. doi: 10.1039/C5RA19151C

    22. [22]

      ZHENG Bin, GAN Tao, WU Shu-jie, LIU Gang, ZHANG Wen-xiang. Influence of microstructure of Pt-FeOx catalyst on the catalytic CO oxidation[J]. Chin J Inorg Chem, 2018,34(6):1065-1070.  

    23. [23]

      QI L F, CHENG B, YU J G, HO W K. High-surface area mesoporous Pt/TiO2 hollow chains for efficient formaldehyde decomposition at ambient temperature[J]. J Hazard Mater, 2016,301:522-530. doi: 10.1016/j.jhazmat.2015.09.026

    24. [24]

      CHEN G X, ZHAO Y, FU G, DUCHESNE P N, GU L, ZHENG Y P, WENG X F, CHEN M S, ZHANG P, PAO C W, LEE J F, ZHENG N F. Interfacial effects in iron-nickel hydroxide-platinum nanoparticles enhance catalytic oxidation[J]. Science, 2014,344:495-499. doi: 10.1126/science.1252553

    25. [25]

      XU L S, ZHANG W H, ZHANG Y L, WU Z F, CHEN B H, JIANG Z Q, MA Y S, YANG J L, HUANG W X. Oxygen vacancy-controlled reactivity of hydroxyls on an FeO(111) monolayer film[J]. J Phys Chem C, 2011,115(14):6815-6824. doi: 10.1021/jp200423j

    26. [26]

      ZHENG B, LIU G, GENG L L, CUI J Y, WU S J, WU P, JIA M J, YAN W F, ZHANG W X. Role of the FeOx support in constructing high-performance Pt/FeOx catalysts for low-temperature CO oxidation[J]. Catal Sci Technol, 2016,6(5):1546-1554. doi: 10.1039/C5CY00840A

    27. [27]

      CHEN B B, ZHU X B, CROCKER M, WANG Y, SHI C. FeOx-supported gold catalysts for catalytic removal of formaldehyde at room temperature[J]. Appl Catal B:Environ, 2014,154-155:73-81. doi: 10.1016/j.apcatb.2014.02.009

    28. [28]

      JIA J F, SHEN J Y, LIN L W, XU Z S, ZHANG T, LIANG D B. A study on reduction behaviors of the supported platinum-iron catalysts[J]. J Mol Catal A:Chem, 1999,138:177-184. doi: 10.1016/S1381-1169(98)00147-2

    29. [29]

      AN N H, DUCHESNE P N, LI S Y, WU P, ZHANG W L, LEE J F, CHENG S, ZHANG P, JIA M J, ZHANG W X. Size effects of platinum colloid particles on the structure and CO oxidation properties of supported Pt/Fe2O3 catalysts[J]. J Phys Chem C, 2013,117:21254-21262. doi: 10.1021/jp404266p

    30. [30]

      AN N H, YUAN X L, PAN B, LI Q L, LI S Y, ZHANG W X. Design of a highly active Pt/Al2O3 catalyst for low-temperature CO oxidation[J]. RSC Adv, 2014,4(72):38250-38257. doi: 10.1039/C4RA05646A

  • 加载中
    1. [1]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    2. [2]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    3. [3]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    4. [4]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    5. [5]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    6. [6]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    7. [7]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    8. [8]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    9. [9]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    10. [10]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    11. [11]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    12. [12]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    13. [13]

      Xueqi Yang Juntao Zhao Jiawei Ye Desen Zhou Tingmin Di Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074

    14. [14]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    15. [15]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    16. [16]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    17. [17]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    18. [18]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    19. [19]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    20. [20]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

Metrics
  • PDF Downloads(7)
  • Abstract views(1432)
  • HTML views(164)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return