Citation: HU Ru-nan, WANG Zhi-cai, LI Lei, WANG Xiao-ling, PAN Chun-xiu, KANG Shi-gang, REN Shi-biao, LEI Zhi-ping, SHUI Heng-fu. Effect of solvent extraction pretreatments on the variation of macromolecular structure of low rank coals[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(7): 778-786. shu

Effect of solvent extraction pretreatments on the variation of macromolecular structure of low rank coals

  • Corresponding author: WANG Zhi-cai, zhicaiw@ahut.edu.cn
  • Received Date: 25 April 2018
    Revised Date: 10 June 2018

    Fund Project: the Natural Scientific Foundation of China 21476004the Natural Scientific Foundation of China 21476003the Natural Scientific Foundation of China 21476002Natural Science Foundation of Anhui Provincial Education Department KJ2016A808the Natural Scientific Foundation of China 51174254The project was supported by the Natural Scientific Foundation of China (21476004, 21476003, 21476002, 51174254), Natural Science Foundation of Anhui Provincial Education Department (KJ2016A808), the Provincial Innovative Group for Processing & Clean Utilization of Coal Resource and the Innovative Group of Anhui University of Technology

Figures(5)

  • In order to understand the effects of solvent pretreatment on the inherent macromolecular structure of low rank coal, Xilinguole lignite (XLL) and Shenfu sub-bituminous coal (SFC) were extracted by tetrahydrofuran (THF) soxhlet extraction, carbon disulfide/N-methyl-2-pyrrolidone (CS2/NMP) mixed solvent extraction and thermal dissolution, respectively. The extracted coals were characterized by diffuse reflection FT-IR spectroscopy (DRIFT), thermogravimetric analysis (TGA), mercury intrusion method (MI) and swelling ratio determination. The results indicated that the extraction resulted in the arrangement and reassociation of coal inherent macromolecules. THF Soxhlet extraction and CS2/NMP mixed solvent extraction can relax the macromolecular structure of coal to varying degrees by changing the non-covalent bond cross-linking, especially the distribution of hydrogen bond interactions. However, thermal dissolutions at high temperature mainly increased the covalent cross linking of coal macromolecules, especially for XLL. Swelling of all extracted coals was limited by Fickian diffusion, and the extracted coal showed lower swelling activation energy than the corresponding raw coals.
  • 加载中
    1. [1]

      XIE K C, LI F, FENG J, LIU J S. Study on the structure and reactivity of swollen coal[J]. Fuel Process Technol, 2000,64(1):241-251.  

    2. [2]

      MARZEC A. Macromolecular and molecular model of coal structure[J]. Fuel Process Technol, 1986,14(86):39-46.  

    3. [3]

      ⅡNO M. Network structure of coals and association behavior of coal-derived materials[J]. Fuel Process Technol, 2000,62(2):89-101.  

    4. [4]

      MARZEC A. Towards an understanding of the coal structure:A review[J]. Fuel Process Technol, 2002,77(25):25-32.  

    5. [5]

      KRZESIN'SKA M. Averaged structural units in bituminous coals studied by means of ultrasonic wave velocity measurements[J]. Energy Fuels, 2001,15(4):930-935. doi: 10.1021/ef0100101

    6. [6]

      MONDRAGON F, QUINTERO G, JARAMILLO A, FERNANDEZA J, HALLB P J. The catalytic liquefaction of coal in the presence of ethanol[J]. Fuel Process Technol, 1998,53(3):171-181. doi: 10.1016/S0378-3820(97)00046-5

    7. [7]

      STEPHENS H, KOTTENSTETTE R. Studies of coal reactivity for direct liquefaction[J]. Fuel, 1990,70(3):386-392.  

    8. [8]

      JOSEPH J T. Liquefaction behavior of solvent-swollen coals[J]. Fuel, 1991,70(2):139-144. doi: 10.1016/0016-2361(91)90144-Y

    9. [9]

      MAE K, MAKI T, OKUTSU H, MIURA K. Examination of relationship between coal structure and pyrolysis yields using oxidized brown coals having different macromolecular networks[J]. Fuel, 2000,79(3/4):417-425.  

    10. [10]

      JOSEPH J T. Beneficial effects of preswelling on conversion and catalytic activity during coal liquefaction[J]. Fuel, 1991,70(3):459-464. doi: 10.1016/0016-2361(91)90139-2

    11. [11]

      SHUI H F, LIU J L, WANG Z C, CAO M X, WEI X Y. Effect of pre-swelling of coal at mild temperatures on its hydro-liquefaction properties[J]. Fuel Process Technol, 2009,90(7/8):1047-1051.  

    12. [12]

      MATHEWS J P, BURGESS-CLIFFORD C, PAINTER P. Interactions of Illinois No. 6 bituminous coal with solvents:A review of solvent swelling and extraction literature[J]. Energy Fuels, 2015,29(3):1279-1294. doi: 10.1021/ef502548x

    13. [13]

      ⅡNO M, TAKANOHASHI T, OHSUGA H, TODA K. Extraction of coals with CS2-N-methyl-2-pyrrolidinone mixed solvent at room temperature:Effect of coal rank and synergism of the mixed solvent[J]. Fuel, 1988,67(12):1639-1647. doi: 10.1016/0016-2361(88)90208-6

    14. [14]

      SHIN Y J, SHEN Y W. Preparation of coal slurry with organic solvents[J]. Chemosphere, 2007,68(2):389-393. doi: 10.1016/j.chemosphere.2006.12.049

    15. [15]

      HU H Q, SHA G Y, CHEN G H. Effect of solvent swelling on liquefaction of Xinglong coal at less severe conditions[J]. Fuel Process Technol, 2000,68(1):33-34. doi: 10.1016/S0378-3820(00)00101-6

    16. [16]

      SHUI H F, WANG Z C, CAO M X. Effect of pre-swelling of coal on its solvent extraction and liquefaction properties[J]. Fuel, 2008,87(13/14):2908-2913.  

    17. [17]

      PINTO F, GULYURTLU I, LOBO L S, CABRITA I. Effect of coal pre-treatment with swelling solvents on coal liquefaction[J]. Fuel, 1999,78(6):629-634. doi: 10.1016/S0016-2361(98)00193-8

    18. [18]

      SZELIGA J, MARZEC A. Swelling of coal in relation to solvent electron-donor numbers[J]. Fuel, 1983,62(10):1229-1231. doi: 10.1016/0016-2361(83)90070-4

    19. [19]

      PAINTER P C, PARK Y, SOBKOWIAK M, COLEMAN M M. Coal solubility and swelling. 2. Effect of hydrogen bonding on calculations of molecular weight from swelling measurements[J]. Energy Fuels, 1990,4(4):384-393. doi: 10.1021/ef00022a009

    20. [20]

      PAINTER P C, PARK Y, GRAF J F. Coal solubility and swelling[J]. Energy Fuels, 1990,4(4):393-397. doi: 10.1021/ef00022a010

    21. [21]

      LUCHT L M, PEPPAS N A. Macromolecular structure of coals:2. Molecular weight between crosslinks from pyridine swelling experiments[J]. Fuel, 1987,66(6):803-809. doi: 10.1016/0016-2361(87)90128-1

    22. [22]

      NISHIOKA M. Evidence for the associated structure of bituminous coal[J]. Fuel, 1993,72(12):1719-1724. doi: 10.1016/0016-2361(93)90361-5

    23. [23]

      OTAKE Y, SUUBERG E M. Temperature dependence of solvent swelling and diffusion process in coals[J]. Energy Fuels, 1997,11(6):1155-1164. doi: 10.1021/ef970020v

    24. [24]

      QIN Z H, ZONG Z M, LIU J Z, MA H M, YANG M J, WEI X Y. Solubilities of lithotypes in carbon disulfide-N-methyl-2-pyrrolidinone mixed solvent[J]. J Fuel Chem Technol, 1997,25(6):549-553.  

    25. [25]

      YOSHIDA T, TAKANOHASHI T, SAKANISHI K, SAITO I, FUJITA M, MASHIMO K. The effect of extraction condition on 'HyperCoal' production (1) under room-temperature filtration[J]. Fuel, 2002,81(11/12):1463-1469.  

    26. [26]

      MIURA K, NAKAGAWA H, ASHIDA R, IHARA T. Production of clean fuels by solvent skimming of coal at around 350℃[J]. Fuel, 2004,83(6):733-738. doi: 10.1016/j.fuel.2003.09.019

    27. [27]

      YOSHIDA T, LI C, TAKANOHASHI T, MATSUMURA A, SATO S, SAITO I. Effect of extraction condition on "HyperCoal" production (2) effect of polar solvents under hot filtration[J]. Fuel Process Technol, 2004,86(1):61-72. doi: 10.1016/j.fuproc.2003.12.003

    28. [28]

      WANG Z C, SHUI H F, PAN C X, LI L, REN S B, LEI Z P, KANG S G, WEI C, HU J C. Structural characterization of the thermal extracts of lignite[J]. Fuel Process Technol, 2014,120(120):8-15.  

    29. [29]

      WANG Z C, LI L, SHUI H F, LEI Z P, REN S B, KANG S G. High temperature thermal extraction of Xianfeng lignite and FT-IR characterization of its extracts and residues[J]. J Fuel Chem Technol, 2011,39(6):401-406. doi: 10.1016/S1872-5813(11)60027-3

    30. [30]

      WANG Z C, SHUI H F, PEI Z N, GAO J S. Study on the hydrothermal treatment of Shenhua coal[J]. Fuel, 2008,87(4):527-533.  

    31. [31]

      OKOLO G N, EVERSON R C, NEOMAGUS H W J P, ROBERTS M J, SAKUROVS R. Comparing the porosity and surface areas of coal as measured by gas adsorption, mercury intrusion and SAXS techniques[J]. Fuel, 2015,141(141):293-304.  

    32. [32]

      ⅡNO M, TAKANOHASHI T, OBARA S, TSUETA H, SANKAWA Y. Characterization of the extracts and residues from CS2-N-methyl-2-pyrrolidinone mixed solvent extraction[J]. Fuel, 1989,68(12):1588-1593. doi: 10.1016/0016-2361(89)90299-8

    33. [33]

      OTAKE Y, SUUBERG E M. Solvent swelling rates of low rank coals and implications regarding their structure[J]. Fuel, 1998,77(8):901-904. doi: 10.1016/S0016-2361(97)00256-1

    34. [34]

      PANDE S, SHARMA D K. Studies of kinetics of diffusion of N-methyl-2-pyrrlidone (NMP), ethylenediamine (EDA) and NMP+EDA (1:1, vol/vol) mixed solvent system in Chinakuri coal by solvent swelling techniques[J]. Energy Fuels, 2001,15(5):1063-1068. doi: 10.1021/ef9902395

    35. [35]

      ESTAPE D, GODIA F, SOLA C. Determination of glucose and ethanol effective diffusion coefficients in Ca-alginate gel[J]. Enzyme Microb Technol, 1992,14(5):396-401. doi: 10.1016/0141-0229(92)90009-D

    36. [36]

      RITGER P L, PEPPAS N A. Transport of penetrants in the macromolecular structure of coals, 7. Transport in thin coal sections[J]. Fuel, 1987,66(10):1379-1388. doi: 10.1016/0016-2361(87)90185-2

  • 加载中
    1. [1]

      Yue RenKang LiYi-Zi WangShao-Peng ZhaoShu-Min PanHaojie FuMengfan JingYaming WangFengyuan YangChuntai Liu . Swelling and erosion assisted sustained release of tea polyphenol from antibacterial ultrahigh molecular weight polyethylene for joint replacement. Chinese Chemical Letters, 2025, 36(2): 110468-. doi: 10.1016/j.cclet.2024.110468

    2. [2]

      Chen ChenJinzhou ZhengChaoqin ChuQinkun XiaoChaozheng HeXi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739

    3. [3]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    4. [4]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    5. [5]

      Mingxin SongLijing XieFangyuan SuZonglin YiQuangui GuoCheng-Meng Chen . New insights into the effect of hard carbons microstructure on the diffusion of sodium ions into closed pores. Chinese Chemical Letters, 2024, 35(6): 109266-. doi: 10.1016/j.cclet.2023.109266

    6. [6]

      Yihan ZhouDuo GaoYaying WangLi LiangQingyu ZhangWenwen HanJie WangChunliu ZhuXinxin ZhangYong Gan . Worm-like micelles facilitate the intestinal mucus diffusion and drug accumulation for enhancing colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108967-. doi: 10.1016/j.cclet.2023.108967

    7. [7]

      Ying HouZhen LiuXiaoyan LiuZhiwei SunZenan WangHong LiuWeijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634

    8. [8]

      Xiaohan Zhang Bo Xiao . Facilitating ultra-fast lithium ion diffusion in face-centered cubic oxides via over-stoichiometric face-sharing configurations. Chinese Journal of Structural Chemistry, 2025, 44(2): 100419-100419. doi: 10.1016/j.cjsc.2024.100419

    9. [9]

      Guanxiong YuChengkai XuHuaqiang JuJie RenGuangpeng WuChengjian ZhangXinghong ZhangZhen XuWeipu ZhuHao-Cheng YangHaoke ZhangJianzhao LiuZhengwei MaoYang ZhuQiao JinKefeng RenZiliang WuHanying Li . Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2023. Chinese Chemical Letters, 2024, 35(11): 109893-. doi: 10.1016/j.cclet.2024.109893

    10. [10]

      Lumin ZhengYing BaiChuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589

    11. [11]

      Ruiheng LiangHuizhong WuZhongzheng HuGe SongXuyang ZhangOmotayo A. ArotibaMinghua Zhou . Hierarchical Fe-Bi/Bi7O9I3/OVs microspheres coupled with natural air diffusion electrode to achieve efficient heterogeneous visible-light-driven photoelectro-Fenton degradation of tetracycline without aeration. Chinese Chemical Letters, 2025, 36(4): 110136-. doi: 10.1016/j.cclet.2024.110136

    12. [12]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    13. [13]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    14. [14]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

    15. [15]

      Jie MaJianxiang WangJianhua YuanXiao LiuYun YangFei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693

    16. [16]

      Teng-Yu HuangJunliang SunDe-Xian WangQi-Qiang Wang . Recent progress in chiral zeolites: Structure, synthesis, characterization and applications. Chinese Chemical Letters, 2024, 35(12): 109758-. doi: 10.1016/j.cclet.2024.109758

    17. [17]

      Guilong LiWenbo MaJialing ZhouCaiqin WuChenling YaoHuan ZengJian Wang . A composite hydrogel with porous and homogeneous structure for efficient osmotic energy conversion. Chinese Chemical Letters, 2025, 36(2): 110449-. doi: 10.1016/j.cclet.2024.110449

    18. [18]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    19. [19]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    20. [20]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

Metrics
  • PDF Downloads(6)
  • Abstract views(810)
  • HTML views(78)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return