Citation: ZHOU Xu-hui, WU Shi-yong, YOU Quan, HUANG Sheng, WU You-qing, GAO Jin-sheng, ZHENG Huan-an, MIN Xiao-jian, SHANG Jian-xuan. Effects of carbonization temperature on the products from integrated mild-liquefaction and carbonization process of Hongliulin coal[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(11): 1289-1295. shu

Effects of carbonization temperature on the products from integrated mild-liquefaction and carbonization process of Hongliulin coal

  • Corresponding author: WU You-qing, wyq@ecust.edu.cn
  • Received Date: 24 July 2017
    Revised Date: 25 August 2017

    Fund Project: The project was supported by the National Natural Science Foundation of China (21476079, 21476080) and the Fundamental Research Funds for the Central Universities (WB1414014)the Fundamental Research Funds for the Central Universities WB1414014the National Natural Science Foundation of China 21476080the National Natural Science Foundation of China 21476079

Figures(6)

  • The integrated mild-liquefaction and carbonization experiments of Hongliulin coal were conducted at 430-600 ℃, and distributions and physico-chemical properties of the obtained products were investigated. The results show that the yields of semi-cokes, organic liquid products and n-hexane soluble organic products were up to 40.64%-53.02%, 30.89%-36.98% and 29.74%-33.28%, respectively. The increasing carbonization temperature in the relatively low temperature range was favorable for the elevated yield of n-hexane soluble organic products, while at relatively high temperature presenting an opposite one. The semi-cokes obtained at 430 ℃ presented a strong caking property, while those at 550 ℃ showed no caking property, and the content of their volatile matters decreased to about 10%. It is suggested that the produced semi-coke could be directionally utilized as blending coal in coking or smokeless fuel by adjusting carbonization temperature.
  • 加载中
    1. [1]

      BAI Xiao-yan. Influence of pyrolysis temperature on volatile phenolic compounds in low rank coal pyrolysis water[J]. Clean Coal Technol, 2014,20(2):87-89.  

    2. [2]

      LI X, PRIYANTO D E, ASHIDA R, MIURA K. Two-stage conversion of low-rank coal or biomass into liquid fuel under mild conditions[J]. Energy Fuels, 2015,29(5):3127-3133. doi: 10.1021/ef502574b

    3. [3]

      MILAN S, DEJAN C, PREDRAG S, VUK S. An initial study on feasible treatment of Serbian lignite through utilization of low-rank coal upgrading technologies[J]. Chem Eng Res Des, 2014,11(92):2383-2395.  

    4. [4]

      KLAUS J. HUTTINGER, ALEXANDER W M. Molecular structure of a brown coal[J]. Fuel, 1987,66(8):1164-1165. doi: 10.1016/0016-2361(87)90319-X

    5. [5]

      WU You-qing, WU Shi-yong, GAO Jin-sheng, LI Liang. A mild coal liquefaction process:CN, 201310539685.2[P]. 2014-02-05.

    6. [6]

      ZHUANG De-wang, WU Shi-yong, YOU Quan, HUANG Sheng, SHANG Jian-xuan, MIN Xiao-jian, DENG Hua-an, WU You-qing. Low rank coal mild liquefaction coupled with carbonization and its products[J]. J Fuel Chem Technol, 2016,44(5):528-533.  

    7. [7]

      YOU Q, WU S, WU Y, HUANG S, GAO J, SHANG J, MIN X, ZHENG H. Product distributions and characterizations for integrated mild-liquefaction and carbonization of low rank coals[J]. Fuel Process Technol, 2017,156:54-61. doi: 10.1016/j.fuproc.2016.09.022

    8. [8]

      ZHUANG De-wang. The research of mild liquefaction coupled with carbonization process of Hongliulin coal[D]. Shanghai:East China University of Science and Technology, 2016.

    9. [9]

      LUQUE M D, PRIEGO F. Soxhlet extraction:Past and present panacea[J]. J Chromatogra A, 2010,1217(16):2383-2389. doi: 10.1016/j.chroma.2009.11.027

    10. [10]

      ZHU Xiao-su, WANG Yu, DU Shu-feng, ZHENG Jian-guo, ZHANG Fan. Research on the relayed coke of heavy coal-liquids[J]. Coal Convers, 1998,21(2):68-74.  

    11. [11]

      SONG Yong-hui, MA Qiao-na, HE Wen-jin, LAN Xin-zhe. Regularity of gaseous product release during direct coal liquefaction residue pyrolysis process[J]. Spectrosc Spect Anal, 2016,36(7):2017-2021.  

    12. [12]

      FAN Yun-zhu. Exploratory study on properties and application of coal direct liquefaction residue[D]. Shanghai:East China University of Science and Technology, 2011.

    13. [13]

      CALKINS W H, TYLER R J. Coal flash pyrolysis:2. Polymethylene compounds in low temperature flash pyrolysis tars[J]. Fuel, 1984,63(8):1119-1124. doi: 10.1016/0016-2361(84)90198-4

    14. [14]

      SIMELL P A, LEPPALAHTI J K, BREDENBERG J B. Catalytic purification of tarry fuel gas withcarbonate rocks and ferrous materials[J]. Fuel, 1992,71(2):211-218. doi: 10.1016/0016-2361(92)90011-C

    15. [15]

      SOLOMON P R, HAMBLEN D G, CARANGELO R M, SERIO M A, DESHPANDE G V. Models of tar formation during coal devolatilization[J]. Combust Flame, 1988,71(2):137-146. doi: 10.1016/0010-2180(88)90003-X

    16. [16]

      CHANG Song, CHU Mo, CAO Wen-han, WANG Bo. Precipitated rule of gas from direct liquefaction residue pyrolysis[J]. Clean Coal Technol, 2014,20(2):84-86.  

    17. [17]

      WANG Peng, BU Xue-peng, XIN Shi-he, DENG Yi-ying. Study on the pyrolysis characteristics of coal liquefaction residues[J]. Coal Chem Ind, 2005,33(2):20-23.  

    18. [18]

      LI Jian-guang, FANG Yi-tian, ZHANG Yong-qi, LI Chun-yu, WANG Yang. Property of char from fast pyrolysis of direct coal liquefaction residue[J]. J Fuel Chem Technol, 2008,36(3):273-278.  

    19. [19]

      XU L, TANG M, DUAN E, LIU B, MA X, ZHANG Y, ARGYLE M D, FAN M. Pyrolysicharacteristics and kinetics of residue from China Shenhua industrial direct coal liquefaction plant[J]. Thermochim Acta, 2014,589:1-10. doi: 10.1016/j.tca.2014.05.005

    20. [20]

      CHEN Ming-bo, WANG Bin, ZHAO Qi, QU Si-jian. Study on the coking character of coalliquefaction residue[J]. Clean Coal Technol, 2005,11(1):29-33.  

    21. [21]

      LI Xiao-hong, MA Jiang-shan, XUE Yan-li, LI Wen-ying. Properties of semi-coke from co-pyrolysis of lignite and direct liquefaction residue of Shendong coal[J]. J Fuel Chem Technol, 2015,43(11):1281-1286. doi: 10.3969/j.issn.0253-2409.2015.11.001 

    22. [22]

      QIAN W, XIE Q, HUANG Y, DANG J, SUN K, YANG Q, WANG J. Combustion characteristics of semicokes derived from pyrolysis of low rank bituminous coal[J]. Int J Min Sci Technol, 2012,22(5):645-650. doi: 10.1016/j.ijmst.2012.08.009

  • 加载中
    1. [1]

      Jiahong WANGZekun XUTianjiao LUJinming HUANG . Performance of N, Mn doped semi-coke activated carbon catalyzed ozone oxidation for the degradation of tetracycline hydrochloride in water. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2549-2560. doi: 10.11862/CJIC.20250120

    2. [2]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    3. [3]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    4. [4]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    5. [5]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Exploration and Practice of Online and Offline Hybrid Teaching Mode in High-Performance Liquid Chromatography Experiment. University Chemistry, 2025, 40(11): 100-107. doi: 10.12461/PKU.DXHX202412133

    6. [6]

      Haiyu ZhuZhuoqun WenWen XiongXingzhan WeiZhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-0. doi: 10.1016/j.actphy.2025.100078

    7. [7]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    8. [8]

      Tiejin ChenXiaokuang XueJian LiMinhui CuiYongliang HaoMianqi XueHaihua XiaoJiechao GePengfei Wang . Membrane-anchoring nanoengineered carbon dots as a pyroptosis amplifier for robust tumor photodynamic-immunotherapy. Acta Physico-Chimica Sinica, 2025, 41(10): 100113-0. doi: 10.1016/j.actphy.2025.100113

    9. [9]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

    10. [10]

      Yutong Dong Huiling Xu Yucheng Zhao Zexin Zhang Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022

    11. [11]

      Haozhe Hu Haoyu Zhang Changsheng Lu . Study on the Precipitation Process of Elemental Sulfur from the Decomposition Products of Thiosulfuric Acid: Is It an Unexpected Failed Experiment?. University Chemistry, 2025, 40(11): 409-415. doi: 10.12461/PKU.DXHX202412034

    12. [12]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    13. [13]

      Yujing Chen Hongqun Ouyang Dan Zhao Yanyan Chu Zhengping Qiao . Recommendations for the Content and Instruction of the Physical Chemistry Experiment “Construction of Ternary Liquid-Liquid Phase Diagrams”. University Chemistry, 2025, 40(7): 359-366. doi: 10.12461/PKU.DXHX202409120

    14. [14]

      Yuhang ZhangYi LiYuehan CaoYingjie ShuaiYu ZhouYing Zhou . Regulating the formation type by Ir of intermediates to suppress product overoxidation in photocatalytic methane conversion. Acta Physico-Chimica Sinica, 2026, 42(2): 100173-0. doi: 10.1016/j.actphy.2025.100173

    15. [15]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    16. [16]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    17. [17]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    18. [18]

      Haiyang Zhang Yanzhao Dong Haojie Li Ruili Guo Zhicheng Zhang Jiangjiexing Wu . Exploring the Integration of Chemical Engineering Principle Experiment with Cutting-Edge Research Achievements. University Chemistry, 2024, 39(10): 308-313. doi: 10.12461/PKU.DXHX202405035

    19. [19]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    20. [20]

      Xiaojun LiuLang QinYanlei Yu . Dynamic Manipulation of Photonic Bandgaps in Cholesteric Liquid Crystal Microdroplets for Applications. Acta Physico-Chimica Sinica, 2024, 40(5): 2305018-0. doi: 10.3866/PKU.WHXB202305018

Metrics
  • PDF Downloads(0)
  • Abstract views(1912)
  • HTML views(1005)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return