Citation: XIAO Huai-de, WANG Qiang. Determination of surface properties of direct coal liquefaction residue before and after solvent extraction by inverse gas chromatography[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(7): 796-801. shu

Determination of surface properties of direct coal liquefaction residue before and after solvent extraction by inverse gas chromatography

  • Corresponding author: WANG Qiang, xjuwq@sina.com
  • Received Date: 30 November 2017
    Revised Date: 2 April 2018

    Fund Project: the National Natural Science Foundation of China 21366029The project was supported by the National Natural Science Foundation of China (21566036, 21366029)the National Natural Science Foundation of China 21566036

Figures(3)

  • Direct coal liquefaction residue (DCLR) is deashed by hydrochloric acid and hydrofluoric acid to obtain ACLR. The ACLR was extracted with n-hexane, toluene and tetrahydrofuran to obtain n-hexane insoluble matter (HCLR), toluene insoluble matter (TCLR), tetrahydrofuran insoluble (FCLR). The surface properties of ACLR, HCLR, TCLR and FCLR were characterized by inverse gas chromatography (IGC). Based on net residual volume Vn of the non-polar probe, surface dispersion free energy were calculated by Dorris-Gray and Schultz method respectively. The adsorption enthalpy △Hsp of the polar probe on surface of the 4 insoluble solids was obtained by Vn of the polar probe, and the acid constant Ka and the base constant Kb of the 4 insoluble solids were calculated by △Hsp. The results show that the surface dispersion free energy of ACLR are obviously changed after solvent extraction, and the dispersion free energy on surface of the 4 insoluble solids is decreasing from 60 to 100℃. By Kb/Ka> 1 and △Hsp analysis, 4 insoluble solids surfaces are both amphoteric and the alkaline effect is stronger than that of the acid effect. As a kinetic adsorption technique, IGC can quickly and accurately characterize change of surface properties of DCLR during fractionated extraction. At the same temperature the surface dispersion free energy obtained by the Dorris-Gray method is slightly higher than that by the Schultz method.
  • 加载中
    1. [1]

      KHARE S, DELL'AMICO M. An overview of solid-liquid separation of residues from coal liquefaction processes[J]. Can J Chem Eng, 2013,91(2):324-331. doi: 10.1002/cjce.v91.2

    2. [2]

      ZHOU Y, XIAO N, QIU J S, SUN Y F, SUN T J, ZHAO Z B, ZHANG Y, TSUBAKI N. Preparation of carbon microfibers from coal liquefaction residue[J]. Fuel, 2008,87(15):3474-3476.  

    3. [3]

      ZHANG J B, JIN L J, HE X F, LIU S B, HU H Q. Catalytic methane decomposition over activated carbons prepared from direct coal liquefaction residue by KOH activation with addition of SiO2 or SBA-15[J]. Int J Hydrogen Energy, 2011,36(15):8978-8984. doi: 10.1016/j.ijhydene.2011.04.205

    4. [4]

      ZHANG J B, JIN L J, ZHU S W, HU H Q. Preparation of mesoporous activated carbons from coal liquefaction residue for methane decomposition[J]. J Nat Gas Chem, 2012,21(6):759-766. doi: 10.1016/S1003-9953(11)60429-5

    5. [5]

      XIAO N, ZHOU Y, QIU J S, WANG Z H. Preparation of carbon nanofibers/carbon foam monolithic composite from coal liquefaction residue[J]. Fuel, 2010,89(5):1169-1171. doi: 10.1016/j.fuel.2009.10.023

    6. [6]

      XIAO N, ZHOU Y, LING Z, QIU J. Synthesis of a carbon nanofiber/carbon foam composite from coal liquefaction residue for the separation of oil and water[J]. Carbon, 2013,59(4):530-536.  

    7. [7]

      LOZANO-CASTELLO D, LILLO-RODENAS M, CAZORLA-AMOR S D, LINARES-SOLANO A. Preparation of activated carbons from Spanish anthracite:Ⅰ. Activation by KOH[J]. Carbon, 2001,39(5):751-759. doi: 10.1016/S0008-6223(00)00186-X

    8. [8]

      LEE S Y, RYU B H, HAN G Y, LEE T J, YOON K J. Catalytic characteristics of specialty carbon blacks in decomposition of methane for hydrogen production[J]. Carbon, 2008,46(14):1978-1986. doi: 10.1016/j.carbon.2008.08.008

    9. [9]

      SUELVES I, PINILLA J, L ZARO M, MOLINER R. Carbonaceous materials as catalysts for decomposition of methane[J]. Chem Eng J, 2008,140(1):432-438.  

    10. [10]

      XIE J, BOUSMINA M, XU G, KALIAGUINE S. Inverse gas chromatography studies of alkali cation exchanged X-zeolites[J]. J Mol Catal A:Chem, 1998,135(2):187-197. doi: 10.1016/S1381-1169(97)00303-8

    11. [11]

      THIELMANN F. Introduction into the characterisation of porous materials by inverse gas chromatography[J]. J Chromatogr A, 2004,1037(1/2):115-123.  

    12. [12]

      MUKHOPADHYAY P, SCHREIBER H P. Aspects of acid-base interactions and use of inverse gas chromatography[J]. Colloids Surf A, 1995,100(95):47-71.  

    13. [13]

      YOUNG, LESLIE C. Physicochemical Measurement by Gas Chromatography[M]. Hoboken:Wiley, 1979.

    14. [14]

      SHAN T H, DUDA J L. Probing coal structure with organic vapour sorption[J]. Fuel, 1987,66(2):170-178. doi: 10.1016/0016-2361(87)90236-5

    15. [15]

      THIELMANN F, BUTLER D A, WILLIAMS D R. Characterization of porous materials by finite concentration inverse gas chromatography[J]. Colloids Surf A, 2001,s187/188(6):267-272.  

    16. [16]

      RVCKRIEM M, ENKE D, HAHN T. Inverse gas chromatography (IGC) as a tool for an energetic characterisation of porous materials[J]. Microporous Mesoporous Mater, 2015,209:99-104. doi: 10.1016/j.micromeso.2014.08.053

    17. [17]

      GUHA O K, ROY J. Molecular probe chromatography of bituminous coal[J]. Fuel Process Technol, 1985,11(2):113-125. doi: 10.1016/0378-3820(85)90022-0

    18. [18]

      GUHA O K, ROY J. Molecular probe chromatography of selected lignites[J]. Fuel, 1985,64(8):1164-1167. doi: 10.1016/0016-2361(85)90123-1

    19. [19]

      GUHA O K, ROY J. Behavior of a high temperature heat treated bituminous coal as a gas chromatographic substrate[J]. Fuel Process Technol, 1988,17(3):301-309. doi: 10.1016/0378-3820(88)90042-2

    20. [20]

      GUHA O K, ROY J, CHOUDHURY A. Non-polar carbon adsorbents from coal:Effect of coal rank studied by molecular probe chromatography[J]. Fuel, 1991,70(1):9-12. doi: 10.1016/0016-2361(91)90087-Q

    21. [21]

      GLASS A S, LARSEN J W. Surface thermodynamics for nonpolar adsorbates on Illinois No. 6 coal by inverse gas chromatography[J]. Energy Fuels, 1993,7(6):994-1000. doi: 10.1021/ef00042a042

    22. [22]

      GLASS A S, LARSEN J W. Coal surface properties. Specific and nonspecific interactions for polar molecules and surface tensions for hydrocarbons at the surface of illinois No. 6 coal[J]. Energy Fuels, 1994,8(3):629-636. doi: 10.1021/ef00045a018

    23. [23]

      AND A S G, STEVENSON D S. Surface thermodynamics for hydrocarbons on wyodak coals[J]. Energy Fuels, 1996,10(3):797-805. doi: 10.1021/ef950224g

    24. [24]

      AND A S G, WENGER E K. Surface thermodynamics for polar adsorbates on wyodak coals[J]. Energy Fuels, 1998,12(1):152-158. doi: 10.1021/ef970117h

    25. [25]

      LI Wen, BAI Jin. Ash Chemistry of Coal[M]. Beijing:Science Press, 2013.

    26. [26]

      DE BOER J. The Dynamical Character of Adsorption Oxford University Press[M]. London:Oxford University Press, 1953.

    27. [27]

      LAVIELLE L. The role of the interface in carbon fibre-epoxy composites[J]. J Adhes, 1987,23(1):45-60. doi: 10.1080/00218468708080469

    28. [28]

      DORRIS G M, GRAY D G. Adsorption of n-alkanes at zero coverage on cellulose paper and wood fibers[J]. J Colloid Interface Sci, 1980,77(2):353-362. doi: 10.1016/0021-9797(80)90304-5

    29. [29]

      VOELKEL A, ANDRZEJEWSKA E, LIMANOWSKA-SHAW H, ANDRZEJEWSKI M. Acid-base surface properties of glass-ionomers determined by IGC[J]. Appl Surf Sci, 2005,245(1):149-154.  

    30. [30]

      HE Xuan-ming. Coal Chemistry[M]. Beijing:Metallurgical Industry Press, 2010.

    31. [31]

      LIU Zhen-xue, WEI Xian-yong, ZHOU Shi-xue, WANG Hua-lan. Advancesing coal of solvent extraction studies part (Ⅰ) organic solvents and their extracting mechanism[J]. Coal Convers, 2003,26(2):1-5.  

    32. [32]

      WANG Xiao-hua, WEI Xian-yong. Advances in coal solvent extraction[J]. Mod Chem Ind, 2003,23(7):19-22.  

    33. [33]

      BALARD H, BRENDLE E, PAPIRER E. Determination of the acid-base properties of solid surfaces using inverse gas chromatography:Advantages and limitations[M]. Boca Raton:CRC Press, 2000.

    34. [34]

      CHEN Chong, LI Wei. Type of hydrogen bonds in coal[J]. J Fuel Chem Technol, 1998,26(2):45-49.  

    35. [35]

      WANG W, QIN Y, QIAN F, YE L, HAO W, YUAN L, JIN F. Partitioning of elements from coal by different solvents extraction[J]. Fuel, 2014,125(2):73-80.  

  • 加载中
    1. [1]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    2. [2]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    3. [3]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    4. [4]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    5. [5]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    6. [6]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    7. [7]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    8. [8]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    9. [9]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    10. [10]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    11. [11]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    12. [12]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    13. [13]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    14. [14]

      Xia Shu Longtian Sima Jiali Wang Jiacheng Chu Xieyidai·Yusunjiang Mubareke·Maimaitijiang Yingwei Lu Yan Wang . Analysis of the Report Generated by the QuadraSorb evo BET Surface Area Analyzer. University Chemistry, 2025, 40(5): 391-400. doi: 10.12461/PKU.DXHX202411013

    15. [15]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    16. [16]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    17. [17]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    18. [18]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    19. [19]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    20. [20]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

Metrics
  • PDF Downloads(6)
  • Abstract views(1807)
  • HTML views(198)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return