Citation: CHENG Qing-yan, LIU Dong-jie, WANG Ming-ming, WANG Yan-ji. Study on catalytic performance of Ni-Co-P amorphous alloy for HDO of vanillin[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(10): 1205-1213. shu

Study on catalytic performance of Ni-Co-P amorphous alloy for HDO of vanillin

  • Corresponding author: CHENG Qing-yan, chengqingyan@hebut.edu.cn
  • Received Date: 18 June 2019
    Revised Date: 25 August 2019

    Fund Project: The project was supported by the Natural Science Foundation of Hebei Province(B2018202293)the Natural Science Foundation of Hebei Province B2018202293

Figures(12)

  • The Ni-P amorphous alloy was synthesized by chemical reduction, modified by adding element Co, and characterized by XRD, SEM, XPS and DSC. The hydrodeoxygenation (HDO) performance of the amorphous alloy was investigated by hydrodeoxygenation of vanillin to 2-methoxy-4-methylphenol (MMP). It is shown that the synergy between Ni and Co not only contributes to the reduction of Ni, increases the number of active centers of the catalyst, but also improves the dispersion, disorder and thermal stability of the amorphous alloy. Under the optimized reaction conditions:nCo/(nCo + nNi)=0.08 (molar ratio), H2 partial pressure of 2.0 MPa, reaction temperature of 150℃, reaction time of 180 min, catalyst dosage of 0.05 g, vanillin conversion and the MMP selectivity can reach 100% and 82.7%, respectively. After 5 cycles of the catalyst, the conversion of vanillin remains 100% and the selectivity of MMP decreases to 68.7%.
  • 加载中
    1. [1]

      NIU Miao-miao, YANG Jia-yao, LI Shang, SUN Ke, CAO Jian, LI Xin-yang. Review on biomass pyrolysis for bio-oil and upgrading research[J]. Biomass Chem Eng, 2018,52(5):55-61. doi: 10.3969/j.issn.1673-5854.2018.05.010

    2. [2]

      SHI Xun-wang, XIN Xin, LIU Zhao, LU Yao, LI Hong-xia, LI Jian-fen, CHEN Qun-peng. Preparation and characterization of Ni/TPC catalyst and applied in straw pyrolysis gas reforming[J]. J Fuel Chem Technol, 2018,46(6):659-665. doi: 10.3969/j.issn.0253-2409.2018.06.003 

    3. [3]

      HUANG F, LI W Z, LU Q, ZHU X F. Homogeneous catalytic hydrogenation of bio-oil and related model aldehydes with RuCl2(PPh3)3[J]. Chem Eng Technol, 2010,33(12):2082-2088. doi: 10.1002/ceat.201000229

    4. [4]

      NIE R F, PENG X L, ZHANG H F, YU X L, LU X H, ZHOU D, XIA Q G. Transfer hydrogenation of bio-fuel with formic acid over biomass-derived N-doped carbon supported acid-resistant Pd catalyst[J]. Catal Sci Technol, 2017,7(3):627-634. doi: 10.1039/C6CY02461K

    5. [5]

      ZHANG Q S, LI H F, GAO P, WANG L L. PVP-NiB amorphous catalyst for selective hydrogenation of phenol and its derivatives[J]. Chin J Catal, 2014,35(11):1793-1799. doi: 10.1016/S1872-2067(14)60203-5

    6. [6]

      MARUSCAL R, MAIRELES-TORRES P, OJEDA M, SADABA I, GRANADOS M L. Furfural:A renewable and versatile platform molecule for the synthesis of chemicals and fuels[J]. Energy Environ Sci, 2016,9(4):1144-1189. doi: 10.1039/C5EE02666K

    7. [7]

      HARVEY B G, GUENTHNER A J, MEYLEMANS H A, HAINES S R, LAMISON K R, GROSHENS T J, LAI W W. Renewable thermosetting resins and thermoplastics from vanillin[J]. Green Chem, 2015,17(2):1249-1258. doi: 10.1039/C4GC01825G

    8. [8]

      BINDWAL A B, VAIDYA P D. Reaction kinetics of vanillin hydrogenation in aqueous solutions using a Ru/C catalyst[J]. Energy Fuels, 2014,28(5):3357-3362. doi: 10.1021/ef500498z

    9. [9]

      DUAN H H, DONG J C, GU X R, PENG Y K, CHEN W X, TITIPONG I, WILLIAM K M, LI M J, YI N, ALEXANDER F R K, WANG Y, ZHENG X S, JI S F, WANG Q, FENG J T, CHEN D L, LI Y D, JEAN-CHARLES B, LIU H C, SHIK C E T, DERMOT O H. Hydrodeoxygenation of water-insoluble bio-oil to alkanes using a highly dispersed Pd-Mo catalyst[J]. Nat Commun, 2017,8(1)591. doi: 10.1038/s41467-017-00596-3

    10. [10]

      LIAO C J, LIU X X, REN Y S, GONG D X, ZHANG Z H. Catalytic deoxygenation of vanillin over layered double hydroxide supported Pd catalyst[J]. J Ind Eng Chem, 2018,68:380-386. doi: 10.1016/j.jiec.2018.08.012

    11. [11]

      CUI Zhi-qing, BI Ting. Fabrication of nickel foam supported palladium for hydrogenation of vanillin[J]. Appl Chem Ind, 2018,47(12):2678-2680. doi: 10.3969/j.issn.1671-3206.2018.12.030

    12. [12]

      YANG X M, LIANG Y, ZHAO X, SONG Y F, HU L H, WANG X F, WANG Z C, QIU J S. Au/CNTs catalyst for highly selective hydrodeoxygenation of vanillin at the water/oil interface[J]. RSC Adv, 2014,4(60):31932-31936. doi: 10.1039/C4RA04692G

    13. [13]

      YANG X M, LIANG Y, CHENG Y Y, SONG W, WANG X F, WANG Z C, QIU J S. Hydrodeoxygenation of vanillin over carbon nanotube-supported Ru catalysts assembled at the interfaces of emulsion droplets[J]. Catal Commun, 2014,47:28-31. doi: 10.1016/j.catcom.2013.12.027

    14. [14]

      WAN M M, ZHANG X L, LI M Y, CHEN B, YIN J, JIN H C, LIN L, CHEN C, ZHANG N. Hollow Pd/MOF nanosphere with double shells as multifunctional catalyst for hydrogenation reaction[J]. Small, 2017,13(38)1701395. doi: 10.1002/smll.201701395

    15. [15]

      FENG J F, HSE C Y, WANG K, YANG Z Z, JIANG J C, XU J M. Directional liquefaction of biomass for phenolic compounds and in situ hydrodeoxygenation upgrading of phenolics using bifunctional catalysts[J]. Energy, 2017,135:1-13. doi: 10.1016/j.energy.2017.06.032

    16. [16]

      WANG W Y, LI L, WU K, ZHANG K, JIE J, YANG Y Q. Preparation of Ni-Mo-S catalysts by hydrothermal method and their hydrodeoxygenation properties[J]. Appl Catal A:Gen, 2015,495:8-16. doi: 10.1016/j.apcata.2015.01.041

    17. [17]

      POURZOLFAGHAR H, ABNISA F, DAUD W M A W, AROUA M K. Atmospheric hydrodeoxygenation of bio-oil oxygenated model compounds:A review[J]. J Anal Appl Pyrolysis, 2018,133:117-127. doi: 10.1016/j.jaap.2018.04.013

    18. [18]

      LI H, LIU Z L. Hydrodeoxygenation of vanillin as model compound for pyrolysis oil over carboxylic carbon nanotubes-supported Ni catalysts[J]. Bioresour Technol Rep, 2019,5:86-90. doi: 10.1016/j.biteb.2018.12.001

    19. [19]

      FAN R Y, CHEN C, HAN M M, GONG W B, ZHANG H M, ZHANG Y X, ZHAO H J, WANG G Z. Highly dispersed copper nanoparticles supported on activated carbon as an efficient catalyst for selective reduction of vanillin[J]. Small, 2018,14(36)1801953. doi: 10.1002/smll.201801953

    20. [20]

      NIE R F, YANG H H, ZHANG H F, YU X L, LU X H, ZHOU D, XIA Q H. Mild-temperature hydrodeoxygenation of vanillin over porous nitrogen-doped carbon black supported nickel nanoparticles[J]. Green Chem, 2017,19(13):3126-3134. doi: 10.1039/C7GC00531H

    21. [21]

      LIAW B J, CHIANG S J, TSAI C H, CHEN Y Z. Preparation and catalysis of polymer-stabilized NiB catalysts on hydrogenation of carbonyl and olefinic groups[J]. Appl Catal A:Gen, 2005,284(1/2):239-246.  

    22. [22]

      GUO Y, LU G. Graphene supported Co-Mo-P catalyst for efficient photocatalyzed hydrogen generation[J]. Int J Hydrogen Energy, 2016,41(16):6706-6712. doi: 10.1016/j.ijhydene.2016.03.065

    23. [23]

      FERNANDES R, PATEL N, MIOTELLO A. Efficient catalytic properties of Co-Ni-P-B catalyst powders for hydrogen generation by hydrolysis of alkaline solution of NaBH4[J]. Int J Hydrogen Energy, 2009,34(7):2893-2900. doi: 10.1016/j.ijhydene.2009.02.007

    24. [24]

      WANG Wei-yan, LIU Peng-li, YANG Si-jun, QIAO Zhi-qiang, YANG Yun-quan. Preparation and performance of amorphous Co-P-B catalyst with high hydrodeoxygenation activity[J]. China Sciencepap, 2015,10(6):735-739+744. doi: 10.3969/j.issn.2095-2783.2015.06.024

    25. [25]

      HU Tao, YANG Yun-quan, WANG Wei-yan, LIU Wen-ying, HE Heng, GAO Bo. Preparation and catalytic properties of Ni(Co)-W-B amorphous catalysts for 4-cresol hydrodeoxygenation[J]. J Fuel Chem Technol, 2012,40(1):80-85. doi: 10.3969/j.issn.0253-2409.2012.01.013 

    26. [26]

      WANG Wei-yan, YANG Yun-quan, LUO He-an, PENG Hui-zuo, ZHANG Xiao-zhe, HU Tao. Preparation and hydrodeoxygenation properties of Ni-Co-W-B amorphous catalyst[J]. Chin J Catal, 2011,32(10):1645-1650.  

    27. [27]

      LIAW B J, CHIANG S J, CHEN S W, CHEN Y Z. Preparation and catalysis of amorphous CoNiB and polymer-stabilized CoNiB catalysts for hydrogenation of unsaturated aldehydes[J]. Appl Catal A:Gen, 2008,V346(1/2):179-188.  

    28. [28]

      LIU Peng-li. Preparation and hydrodeoxygenation activity of Ni(Co)-P-B amorphous catalysts[D]. Changsha: Xiangtan Univ, 2016.

    29. [29]

      GUO J, HOU Y J, YANG C H, WANG Y Q, WANG L. Effects of nickel ethylenediamine complex on the preparation of Ni-B amorphous alloy catalyst with ultrasonic assistance[J]. Mater Lett, 2012,67(1):51-153.  

    30. [30]

      WANG Ming-yuan, LENG Yi-xin, HUANG Chun-xiang, WANG Jun, SHAO Hui. Preparation of nickel phosphide and its catalytic hydrogenation of furfural to cyclopentanone[J]. Fine Chem, 2018,35(11):1893-1899.  

    31. [31]

      GUO Yue-ping, LV Gong-xuan. In situ synthesis of Co-P/GP photocatalysts for H2 evolution from water[J]. Chin J Inorg Chem, 2016,32(7):1177-1182.  

    32. [32]

      WANG W Y, YANG Y Q, LUO H A, LIU W Y. Effect of additive (Co, La) for Ni-Mo-B amorphous catalyst and its hydrodeoxygenation properties[J]. Catal Commun, 2010,11(9):803-807. doi: 10.1016/j.catcom.2010.02.019

    33. [33]

      WANG W Y, YANG Y Q, LUO H A, HU T, LIU W Y. Amorphous Co-Mo-B catalyst with high activity for the hydrodeoxygenation of bio-oil[J]. Catal Commun, 2011,12(6):436-440. doi: 10.1016/j.catcom.2010.11.001

    34. [34]

      WANG W Y, YANG S J, QIAO Z Q, LIU P L, WU K, YANG Y Q. Preparation of Ni-W-P-B amorphous catalyst for the hydrodeoxygenation of p-cresol[J]. Catal Commun, 2015,60:50-54. doi: 10.1016/j.catcom.2014.11.023

    35. [35]

      CHEN L F, CHEN Y W. Influence of additive (W, Mo, and Ru) on Ni-B amorphous alloy catalyst in hydrogenation of p-chloronitrobenzene[J]. Ind Eng Chem Res, 2006,45(26):8866-8873. doi: 10.1021/ie060751v

    36. [36]

      WANG W Y, YANG Y Q, BAO J G, LUO H A. Characterization and catalytic properties of Ni-Mo-B amorphous catalysts for phenol hydrodeoxygenation[J]. Catal Commun, 2010,11(2):100-105.  

    37. [37]

      LI H, ZHAO Q F, LI H X. Selective hydrogenation of p-chloronitrobenzene over Ni-P-B amorphous catalyst and synergistic promoting Influences of B and P[J]. J Mol Catal A:Chem, 2008,285(1):29-35.  

    38. [38]

      SONG Yan-fen, QIN Yu-cai, LIU Bing, ZHAO Sheng-nan, MO ZHOU-sheng, SONG Li-juan. Preparation and performance of NiCoB/SAPO-5 catalyst for hydrogenation of nitrobenzene to p-aminophenol[J]. Petrochem Technol Appl, 2015,33(4):301-304. doi: 10.3969/j.issn.1009-0045.2015.04.003

    39. [39]

      LI Hui, MA Chun-jing, LI He-xing. Study on cinnamaldehyde hydrogenation to 3-phenylpropyl aldehyde at atmospheric pressure over Ni-Co-B amorphous alloys[J]. J Chem Ind Eng (China), 2006,64(19):1947-1953. doi: 10.3321/j.issn:0567-7351.2006.19.002

    40. [40]

      SUN Ya-ling, DU Chang-hai, ZHOU Dan, XING Hua-qiong. Liquid phase furfural hydrogenation to furfuryl alcohol over CoNiB amorphous alloy catalyst[J]. Chem Eng, 2010,24(1):10-12+15. doi: 10.3969/j.issn.1002-1124.2010.01.004

    41. [41]

      WU Jia-chun, SHI Gen-xiang, REN Zhi-long, ZHU Xiao-dong. Study on Pd/C catalytic hydrogenolysis of vanillin[J]. Chem Enterp Manage, 2015(27):102-102+104. doi: 10.3969/j.issn.1008-4800.2015.27.088

    42. [42]

      PAN Deng, WANG Ya-ming, ZHONG Shen-jie, JIANG Li-hong. Optimization of Ni-P/APO-11 amorphous catalyst for catalytic hydrogenation of turpentine using response surface methodology[J]. J Chem Ind Eng (China), 2017,68(6):2376-2385.  

    43. [43]

      YANG B, GONG X Q, WANG H F, CAO X M, JOHN J R, HU P. Evidence to challenge the universality of the Horiuti-Polanyi mechanism for hydrogenation in heterogeneous catalysis:Origin and trend of the preference of a non-Horiuti-Polanyi mechanism[J]. J Am Chem Soc, 2013,135(40):15244-15250. doi: 10.1021/ja408314k

  • 加载中
    1. [1]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    4. [4]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    5. [5]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    6. [6]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    7. [7]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    8. [8]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    9. [9]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    10. [10]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    11. [11]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    12. [12]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    13. [13]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    14. [14]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    15. [15]

      Kangmin WangLiqiu WanJingyu WangChunlin ZhouKe YangLiang ZhouBijin Li . Multifunctional 2-(2′-hydroxyphenyl)benzoxazoles: Ready synthesis, mechanochromism, fluorescence imaging, and OLEDs. Chinese Chemical Letters, 2024, 35(10): 109554-. doi: 10.1016/j.cclet.2024.109554

    16. [16]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    17. [17]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    18. [18]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    19. [19]

      Yuexiang LiuXiangqiao YangTong LinGuantian YangXiaoyong XuBubing ZengZhong LiWeiping ZhuXuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747

    20. [20]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

Metrics
  • PDF Downloads(6)
  • Abstract views(1448)
  • HTML views(124)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return