Citation: Zhang Kailong, Yu Zhijian, Qiu Jiaqing, Ke Zhiwei, Huang Chao, Jiang Jianzhong, Yu Qunying. Pharmaceutical Research on Small Ruthenium Complexes[J]. Chemistry, ;2019, 82(11): 972-981. shu

Pharmaceutical Research on Small Ruthenium Complexes

  • Corresponding author: Yu Qunying, qunyingyu@qq.com
  • Received Date: 6 August 2019
    Accepted Date: 30 August 2019

Figures(9)

  • Ruthenium complexes are not only a novel class of antineoplastic agents, but also an active photosensitizers which can be used as probes for detecting structural and functional aspects of nucleic acid chemistry, biological imaging of reactive carbonyl species, sensing amyloid β aggregation in Alzheimer's disease (AD), and so on. In light of these, we summarize the recent advances of pharmaceutical research in small molecule ruthenium complexes.
  • 加载中
    1. [1]

      E Alessio. Eur. J. Inorg. Chem., 2017, 2017: 1549~1560. 

    2. [2]

      I Kostova. Curr. Med. Chem., 2006, 13: 1085~1107. 

    3. [3]

      C Artner, H U Holtkamp, C G Hartinger et al. J. Inorg. Biochem., 2017, 177: 322~327. 

    4. [4]

      F E Poynton, S A Bright, S Blasco et al. Chem. Soc. Rev., 2017, 46: 7706~7756. 

    5. [5]

      A Notaro, G Gasser. Chem. Soc. Rev., 2017, 46: 7317~7337. 

    6. [6]

      C S Allardyce, P J Dyson. Platinum Met. Rev., 2001, 45: 62~69. 

    7. [7]

      M J Clarke, F Zhu, D R Frasca. Chem. Rev., 1999, 99: 2511~2534. 

    8. [8]

      S Thota, D A Rodrigues, D C Crans et al. J. Med. Chem., 2018, 61: 5805~5821. 

    9. [9]

      E Alessio, G Mestroni, A Bergamo et al. Curr. Top. Med. Chem., 2004, 4: 1525~1535. 

    10. [10]

      C G Hartinger, M A Jakupec, S Zorbas-Seifried et al. Chem. Biodivers., 2008, 5: 2140~2155. 

    11. [11]

      C G Hartinger, S Zorbas-Seifried, M A Jakupec et al. J. Inorg. Biochem., 2006, 100: 891~904. 

    12. [12]

      L Zeng, P Gupta, Y Chen et al. Chem. Soc. Rev., 2017, 46: 5771~5804. 

    13. [13]

      D A Smithen, H Yin, M H R Beh et al. Inorg. Chem., 2017, 56: 4121~4132. 

    14. [14]

      L Zeng, Y Chen, J Liu et al. Sci. Rep., 2016, 6: 19449. 

    15. [15]

      C M Clavel, E Paunescu, P Nowak-Sliwinska et al. J. Med. Chem., 2015, 58: 3356~3365. 

    16. [16]

      L Zhang, P Carroll, E Meggers. Org. Lett., 2004, 6: 521~523. 

    17. [17]

      P J Sadler, R F Lainez, H Abraba et al. US: 20060058270A1.

    18. [18]

      M Wenjie. US: 8357678B2.

    19. [19]

      G Mestroni, E Alessio, G Sava. WO: 1998000431A1.

    20. [20]

      A J Gamble, J M Lynam, P H Walton. WO: 2013038134A1.

    21. [21]

      R E Morris, P J Sadler, H Chen et al. US: 20050239765A1.

    22. [22]

      R E Morris, P J Sadler, D Jodrell et al. US: 6936634B2.

    23. [23]

      B K Keppler. WO: 1997036595A3.

    24. [24]

      G Mestroni, E Alessio, G Sava et al. US: 6921824B1.

    25. [25]

      R E Morris, R E Aird, P J Sadler et al. J. Med. Chem., 2001, 44: 3616~3621. 

    26. [26]

      Z Adhireksan, G E Davey, P Campomanes et al. Nat. Commun., 2014, 5: 3462. 

    27. [27]

      R L Hayward, Q C Schornagel, R Tente et al. Cancer Chemother. Pharmacol., 2005, 55: 577~583. 

    28. [28]

      X Meng, M L Leyva, M Jenny et al. Cancer Res., 2009, 69: 5458~5466. 

    29. [29]

      J E' Debreczeni, A N Bullock, G E Atilla et al. Angew. Chem. Int. Ed., 2006, 45: 1580~1585. 

    30. [30]

      R Trondl, P Heffeter, C R Kowol et al. Chem. Sci., 2014, 5: 2925~2932. 

    31. [31]

      E S Antonarakis, A Emadi. Cancer Chemother. Pharmacol., 2010, 66: 1~9. 

    32. [32]

      S Chatterjee, S Kundu, A Bhattacharyya et al. J. Biol. Inorg. Chem., 2008, 13: 1149~1155. 

    33. [33]

      R F S Lee, S Escrig, C Maclachlan et al. Int. J. Mol. Sci., 2017, 18: 1869. 

    34. [34]

      M Montani, G V B Pazmay, A Hysi et al. Pharmacol. Res., 2016, 107: 282~290. 

    35. [35]

    36. [36]

      N P Cook, V Torres, D Jain et al. J. Am. Chem. Soc. 2011, 133: 11121~11123. 

    37. [37]

      C de la Torre, A Toscani, C Marín-Hernández et al. J. Am. Chem. Soc., 2017, 139: 18484~18487. 

    38. [38]

      Y H Tang, Y Y Ma, J Yin et al. Chem. Soc. Rev., 2019, 48: 4036~4048. 

    39. [39]

      C L Liu, R Zhang, W Z Zhang et al. J. Am. Chem. Soc., 2019, 141: 8462~8472. 

    40. [40]

      K Arora, M Herroon, M H Al-Afyouni et al. J. Am. Chem. Soc., 2018, 140: 14367~14380. 

    41. [41]

      S Chakrabortty, B K Agrawalla, A Stumper et al. J. Am. Chem. Soc., 2017, 139: 2512~2519. 

    42. [42]

      S Balasubramanian, L H Hurley, S Neidle. Nat. Rev. Drug Discov., 2011, 10: 261~275. 

    43. [43]

      N Hosoya, K Miyagawa. Cancer Sci., 2014, 105: 370~388. 

    44. [44]

      P Kumar, S Dasari, A K Patra. Eur. J. Med. Chem., 2017, 136: 52~62. 

    45. [45]

      G Sathyaraj, T Weyhermüller, B U Nair. Eur. J. Med. Chem., 2010, 45: 284~291. 

    46. [46]

      D L Arockiasamy, S Radhika, R Parthasarathi et al. Eur. J. Med. Chem., 2009, 44: 2044~2051. 

    47. [47]

      W Su, Q Qian, P Li et al. Inorg. Chem., 2013, 52: 12440~12449. 

    48. [48]

      T S Kamatchi, N Chitrapriya, S K Kim et al. Eur. J. Med. Chem., 2013, 59: 253~264. 

    49. [49]

      N Busto, J Valladolid, M Martinez-Alonso et al. Inorg. Chem., 2013, 52: 9962~9974. 

    50. [50]

      P Lincoln, B Norden. J. Phys. Chem. B, 1998, 102: 9583~9594. 

    51. [51]

      H Chen, J A Parkinson, R E Morris et al. J. Am. Chem. Soc., 2003, 125: 173~186. 

    52. [52]

      N Besker, C Coletti, A Marrone et al. J. Phys. Chem. B, 2007, 111: 9955~9964. 

    53. [53]

      F Caruso, E Monti, J Matthews et al. Inorg. Chem., 2014, 53: 3668~3677. 

    54. [54]

      S P Foxon, C Green, M G Walker et al. Inorg. Chem., 2012, 51: 463~471. 

    55. [55]

      M Frik, A Martinez, B T Elie et al. J. Med. Chem., 2014, 57: 9995~10012. 

    56. [56]

      S Shi, T Xie, T M Yao et al. Polyhedron, 2009, 28: 1355~1361. 

    57. [57]

      H Huang, P Zhang, B Yu et al. J. Med. Chem., 2014, 57: 8971~8983. 

    58. [58]

      S H Lai, W Li, J H Yao et al. J. Photochem. Photobiol. B, 2016, 158: 39~48. 

    59. [59]

      P Čanovic, A R Simovic, S Radisavljevic et al. J. Biol. Inorg. Chem., 2017, 22: 1007~1028. 

    60. [60]

      P Heffeter, K Böck, B Atil et al. J. Biol. Inorg. Chem., 2010, 15: 737~748. 

    61. [61]

      A Casini, C Gabbiani, F Sorrentino et al. J. Med. Chem., 2008, 51: 6773~6781. 

    62. [62]

      I M Ghobrial, T E Witzig, A A Adjei. CA-Cancer J. Clin., 2005, 55: 178~194. 

    63. [63]

      S Elmore. Toxicol. Pathol., 2007, 35, 495~516.

    64. [64]

      K Zheng, Q Wu, C Wang et al. Anti-Cancer Agents Med. Chem., 2017, 17: 29~39.

    65. [65]

      D Wan, B Tang, Y J Wang et al. Eur. J. Med. Chem., 2017, 139: 180~190. 

    66. [66]

      T Chen, Y Liu, W J Zheng et al. Inorg. Chem., 2010, 49: 6366~6368. 

    67. [67]

      W Li, G W Jiang, J H Yao et al. J. Photochem. Photobiol. B, 2014, 140: 94~104. 

    68. [68]

      A Castonguay, C Doucet, M Juhas et al. J. Med. Chem., 2012, 55: 8799~8806. 

    69. [69]

      C Tan, S Lai, S Wu et al. J. Med. Chem., 2010, 53: 7613~7624. 

    70. [70]

      Z Luo, L Yu, F Yang et al. Metallomics, 2014, 6: 1480~1490. 

    71. [71]

      Z F Chen, Q P Qin, J L Qin et al. J. Med. Chem., 2015, 58: 4771~4789. 

    72. [72]

      A Bergamo, C Gaiddon, J H Schellens et al. J. Inorg. Biochem., 2012, 106, 90~99. 

    73. [73]

      H Bregman, P J Carroll, E Meggers. J. Am. Chem. Soc., 2006, 128: 877~884. 

    74. [74]

      J Maksimoska, L Feng, K Harms et al. J. Am. Chem. Soc., 2008, 130: 15764~15765. 

    75. [75]

      E Meggers. Curr. Opin. Chem. Biol., 2007, 11: 287~292. 

    76. [76]

    77. [77]

      Y K Yan, M Melchart, A Habtemariam et al. Chem. Commun., 2005, 4764~4776. 

    78. [78]

      C G Hartinger, N Metzler-Nolte, P J Dyson. Organometallics, 2012, 31(16): 5677~5685. 

    79. [79]

      F Schmitt, J Freudenreich, N P Barry et al. J. Am. Chem. Soc., 2012, 134(2): 754~757. 

    80. [80]

      J E Debreczeni, A N Bullock, G E Atilla et al. Angew. Chem. Int. Ed., 2006, 45: 1580~1585. 

    81. [81]

      G Shi, S Monro, R Hennigar et al. Coord. Chem. Rev., 2015, 282: 127~138. 

    82. [82]

      S J Dougan, M Melchart, A Habtemariam et al. Inorg. Chem., 2006, 45: 10882~10894. 

    83. [83]

      Y Fu, A Habtemariam, A M B H Basri et al. Dalton Transac., 2011, 40: 10553~10562. 

    84. [84]

      Y Fu, M J Romero, A Habtemariam et al. Chem. Sci., 2012, 3: 2485~2494. 

    85. [85]

      M Hanif, P Schaaf, W Kandioller et al. Aust. J. Chem., 2010, 63: 1521~1528. 

    86. [86]

      S H Van Rijt, A Mukherjee, A M Pizarro et al. J. Med. Chem., 2010, 53: 840~849. 

    87. [87]

      M J McKeage, S J Berners-Price, P Galettis et al. Cancer Chemother. Pharmacol., 2000, 46: 343~350. 

    88. [88]

      L Di, P V Fish, T Mano. Drug Discov. Today, 2012, 17(9~10): 486~495. 

    89. [89]

      S J Dougan, A Habtemariam, S E McHale et al. PNAS, 2008, 105, 11628~11633. 

    90. [90]

      M G Mendoza-Ferri, C G Hartinger, A A Nazarov et al. Organometallics, 2009, 28: 6260~6265. 

    91. [91]

      A L Noffke, A Habtemariam, A M Pizarro et al. Chem. Commun., 2012, 48: 5219~5246. 

    92. [92]

      B Serli, E Zangrando, T Gianferrara et al. Eur. J. Inorg. Chem., 2005, (17): 3423~3434. 

    93. [93]

      D N Akbayeva, L Gonsalvi, W Oberhauser et al. Chem. Commun., 2003, (2): 264~265. 

    94. [94]

      R E Morris, R E Aird, P D Murdoch et al. J. Med. Chem., 2001, 44(22): 3616~3621. 

    95. [95]

      C Scolaro, A Bergamo, L Brescacin et al. J. Med. Chem., 2005, 48(12): 4161~4171. 

    96. [96]

      A Dorcier, W H Ang, S Bolano et al. Organometallics, 2006, 25(17): 4090~4096. 

    97. [97]

      A F A Peacock, A Habtemariam, S A Moggach et al. Inorg. Chem., 2007, 46(10): 4049~4059. 

    98. [98]

      M Hanif, A A Nazarov, C G Hartinger et al. Dalton Transac., 2010, 39(31): 7345~7352. 

    99. [99]

      I Berger, M Hanif, A A Nazarov et al. Chem. Eur. J., 2008, 14: 9046~9057. 

    100. [100]

      M Hanif, S M Meier, W Kandioller et al. J. Inorg. Biochem., 2011, 105(2): 224~231. 

    101. [101]

      A F Peacock, M Melchart, R J Deeth et al. Chem. Eur. J., 2007, 13: 2601~2613. 

    102. [102]

      J H Kasser, W Kandioller, C G Hartinger et al. Organomet. Chem., 2010, 695(6): 875~881. 

    103. [103]

      M Hanif, H Henke, S M Meier et al. Inorg. Chem., 2010, 49(17): 7953~7963. 

    104. [104]

      W Kandioller, C G Hartinger, A A Nazarov et al. Organometallics, 2009, 28(15): 4249~4251. 

    105. [105]

      W Kandioller, C G Hartinger, A A Nazarov et al. J. Organomet. Chem., 2009, 694(6): 922~929. 

    106. [106]

      W Kandioller, C G Hartinger, A A Nazarov et al. Chem. Eur. J., 2009, 15: 12283~12291. 

    107. [107]

      A Habtemariam, M Melchart, R Fernandez et al. J. Med. Chem., 2006, 49(23): 6858~6868. 

    108. [108]

      A F A Peacock, S Parsons, P J Sadler. J. Am. Chem. Soc., 2007, 129(11): 3348~3357. 

    109. [109]

      S H Van Rijt, A J Hebden, T Amaresekera et al. J. Med. Chem., 2009, 52(23): 7753~7764. 

    110. [110]

    111. [111]

      S M Meier, M Novak, W Kandioller et al. Chem. Eur. J., 2013, 19: 9297~9307. 

    112. [112]

      M Schmidlehner, L S Flocke, A Roller et al. Dalton Transac., 2016, 45: 724~733. 

    113. [113]

      S M Meier, M Hanif, Z Adhireksan et al. Chem. Sci., 2013, 4: 1837~1846. 

    114. [114]

      C A Riedl, L S Flocke, M Hejl et al. Inorg. Chem., 2017, 56: 528~541. 

    115. [115]

      R E Aird, J Cummings, A A Ritchie et al. Br. J. Cancer, 2002, 86: 1652~1657. 

    116. [116]

      L K Filak, G Muhlgassner, F Bacher et al. Organometallics, 2011, 30(2): 273~283. 

    117. [117]

      L K Filak, G Muhlgassner, M A Jakupec et al. J. Biol. Inorg. Chem., 2010, 15(6): 903~918. 

    118. [118]

      W F Schmid, R O John, V B Arion et al. Organometallics, 2007, 26(26): 6643-6652. 

    119. [119]

      W Ginzinger, G Muhlgassner, V B Arion et al. J. Med. Chem., 2012, 55: 3398-3413. 

    120. [120]

      S Betanzos-Lara, O Novakova, R J Deeth et al. J. Biol. Inorg. Chem., 2012, 17(7): 1033-1051. 

    121. [121]

      C M Hackl, M S Legina, V Pichler et al. Chem. Eur. J., 2016, 22: 17269-17281. 

    122. [122]

      C A Puckett, R J Ernst, J K Barton. Dalton Transac., 2010, 39: 1159-1170. 

    123. [123]

      G Hartinger, S Zorbas-Seifried, M A Jakupec. J. Inorg. Biochem., 2006, 100: 891-904. 

    124. [124]

      P D W Eckford, F J Sharom. Chem. Rev., 2009, 109: 2989-3011. 

    125. [125]

      R E Aird, J Cummings, A A Ritchie et al. Br. J. Cancer, 2002, 86, 1652-1657. 

  • 加载中
    1. [1]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    2. [2]

      Xiaotong LUPan ZHANGZijie ZHAOLei HUANGHongwei ZUOLili LIANG . Antitumor and antibacterial activities of pyridyl Schiff base indium and dysprosium complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1523-1532. doi: 10.11862/CJIC.20250073

    3. [3]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    4. [4]

      Rui WUYankun ZHANGJiufu LUPengfei ZHANGYang WANG . Research process on radioactive 18F-labelled chemical agents as positron emission tomography imaging probes for tumour detection. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1702-1718. doi: 10.11862/CJIC.20240387

    5. [5]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    6. [6]

      Hanxue LIUShijie LIMeng RENXuling XUEHongke LIU . Design and antitumor properties of dehydroabietic acid functionalized cyclometalated iridium(Ⅲ) complex. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1483-1494. doi: 10.11862/CJIC.20250031

    7. [7]

      Pengli GUANRenhu BAIXiuling SUNBin LIU . Trianiline-derived aggregation-induced emission luminogen probe for lipase detection and cell imaging. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1817-1826. doi: 10.11862/CJIC.20250058

    8. [8]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    9. [9]

      Fa Wang Yu Chen Hui Chao . Ruthenium(II) Complexes as Photoactivated Chemo-Prodrugs for Hypoxic Tumor Therapy. University Chemistry, 2025, 40(7): 200-212. doi: 10.12461/PKU.DXHX202410024

    10. [10]

      Jiahao Zeng Hui Chao . 诱导程序性细胞死亡的金属抗肿瘤药物研究. University Chemistry, 2025, 40(6): 145-159. doi: 10.12461/PKU.DXHX202406019

    11. [11]

      Jian LiYu ZhangRongrong YanKaiyuan SunXiaoqing LiuZishang LiangYinan JiaoHui BuXin ChenJinjin ZhaoJianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042

    12. [12]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    13. [13]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    14. [14]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    15. [15]

      Qiang HUZhiqi CHENZhong CHENXu WANGWeina WU . Pyridinium-chalcone-based ClO- fluorescent probe: Preparation and biological imaging applications. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1789-1795. doi: 10.11862/CJIC.20250086

    16. [16]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    17. [17]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    18. [18]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    19. [19]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    20. [20]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

Metrics
  • PDF Downloads(22)
  • Abstract views(1962)
  • HTML views(274)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return