Citation: LU Ping, XIE Jia-le, ZHANG Xue-wei, WANG Jia-yi, FENG Chao-yu, SONG Xin, BU Yu-wei. Release properties of semi-volatile heavy metals in sewage sludge/coal co-incineration under O2/CO2 atmosphere[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(5): 533-542. shu

Release properties of semi-volatile heavy metals in sewage sludge/coal co-incineration under O2/CO2 atmosphere

  • Corresponding author: LU Ping, luping@njnu.edu.cn
  • Received Date: 10 February 2020
    Revised Date: 23 March 2020

    Fund Project: the National Natural Science Foundation of China 51476079The project was supported by the National Natural Science Foundation of China (51476079)

Figures(9)

  • The effects of six factors involving incineration temperature (tc), sludge blending ratio (Xs), O2 concentration(φO2), initial moisture content (φH2O), incineration time (τ) and chlorine content (φCl) on the release properties of semi-volatile heavy metals (SVHMs) (such as Zn, Pb, Cd, Cu, Ni and Cr) in co-incineration of sewage sludge and coal under O2/CO2 atmosphere were investigated in a fixed-bed incinerator based on orthogonal experiment. The results indicate that the influence of six factors on the release fraction of SVHMs is ordered as tc >> Xs > φH2O > φO2τ > φCl. The release fraction of Zn is the largest, followed by Pb and Cd, and the release fractions of Cu, Ni and Cr are the least at the same co-incineration condition. Increasing temperature is helpful for SVHMs release, and the promotion at high temperatures of 1000-1100 ℃ on SVHMs release is significantly stronger than that at the low temperature of 700-900 ℃. The release fractions of Zn and Pb increase remarkably from 36.1% and 12.2% to 70.9% and 63.5% with increasing tc from 700 to 1100 ℃, respectively, and the release fraction of Cd achieves the maximum of 40.0% at tc=900 ℃, however, the release fractions of Cu, Ni and Cr mostly keep below 20.0%. The influence of incineration temperature on the heavy metal release fraction is ordered as Pb > Zn > Cd > Cu > Cr > Ni. The release fractions of SVHMs decrease with increasing sludge blending ratio, but present a wave-like trend with increasing initial moisture content. The lower release fraction of SVHMs is achieved at φH2O=0 or 40%. O2 concentration has a certain influence on SVHMs release, and the lowest release fraction of SVHMs is achieved at φO2=30%. The influence of incineration time and chlorin content on the release of Pb is significantly stronger than that of other five SVHMs. The suggested optimal conditions of co-incineration of sludge and coal in O2/CO2 atmosphere are: the incineration temperature is 900-1000 ℃, the sludge blending ratio is about 25%, the O2 concentration is 30%, the initial moisture content is less than 10%, and the incineration time is reduced as far as possible.
  • 加载中
    1. [1]

      GAO N, KAMRAN K, QUAN C, WILLIAMS P T. Thermochemical conversion of sewage sludge:A critical review[J]. Prog Energy Combust Sci, 2020,79100843. doi: 10.1016/j.pecs.2020.100843

    2. [2]

      CHEN Dan-dan, DOU Yu-hao, LU Ping, HUANG Ya-ji, ZHOU Jun. A review on sludge deep dewatering technology[J]. Chem Ind Eng Prog, 2019,38(10):4722-4746.  

    3. [3]

      YANG G, ZHANG G, WANG H. Current state of sludge production, management, treatment and disposal in China[J]. Water Res, 2015,78(1):60-73.  

    4. [4]

      KELESSIDIS A, STASINAKIS A S. Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries[J]. Waste Manage, 2012,32(6):1186-1195. doi: 10.1016/j.wasman.2012.01.012

    5. [5]

      CHEN W, WANG F, KANHAR A H. Sludge acts as a catalyst for coal during the co-combustion process investigated by thermogravimetric analysis[J]. Energies, 2017,10(12)1993. doi: 10.3390/en10121993

    6. [6]

      FU Jie-wen, LIU Jing-yong, SUN Shui-yu, GUO Jia-hong, HUANG Shao-song, ZHANG Gen-lin, SUN Jian, ZHUO Zhan-xu, LIANG Kai-yun. Co combustion characteristic of sewage sludge and coal under CO2/O2 and N2/O2 atmosphere[J]. Acta Sci Circumst, 2017,37(3):1021-1031.  

    7. [7]

      LI Guo-jian, HU Yan-jun, CHEN Guan-yi, ZHONG Ying-jie, ZHANG Xue-mei. Transferring characteristics of heavy metals during co-incineration of municipal sewage sludge and solid waste[J]. J Fuel Chem Technol, 2011,39(2):155-160. doi: 10.3969/j.issn.0253-2409.2011.02.015 

    8. [8]

      JANG H N, KIM J H, BACK S K, SUNG J H, YOO H M, CHOI H S, SEO Y C. Combustion characteristics of waste sludge at air and oxy-fuel combustion conditions in a circulating fluidized bed reactor[J]. Fuel, 2016,170:92-99. doi: 10.1016/j.fuel.2015.12.033

    9. [9]

      MOŠKO J, POHOŘELY M, ZACH B, SVOBODA K, DURDA T, JEREMIÁŠ M, ŠYC M, VÁCLAVKOVÁ Š, SKOBLIA S, BEŇO Z, BRYNDA J. Fluidized bed incineration of sewage sludge in O2/N2 and O2/CO2 atmospheres[J]. Energy Fuels, 2018,32(2):2355-2365. doi: 10.1021/acs.energyfuels.7b02908

    10. [10]

      BU Y, DAI X, LU P. Release characteristics of semi-volatile heavy metals during co-combustion of sewage sludge and coal under the O2/CO2 atmosphere[J]. J Therm Anal Calorim, 2018,133(2):1041-1047. doi: 10.1007/s10973-018-7170-6

    11. [11]

      VEJAHATI F, XU Z, GUPTA R. Trace elements in coal:Associations with coal and minerals and their behavior during coal utilization-A review[J]. Fuel, 2010,89(4):904-911. doi: 10.1016/j.fuel.2009.06.013

    12. [12]

      UDAYANGA W D C, VEKSHA A, GIANNIS A, LISAK G, CHANG V W C, LIM T T. Fate and distribution of heavy metals during thermal processing of sewage sludge[J]. Fuel, 2018,226:721-744. doi: 10.1016/j.fuel.2018.04.045

    13. [13]

      CHEN T, YAN B. Fixation and partitioning of heavy metals in slag after incineration of sewage sludge[J]. Waste Manage (Oxford), 2012,32(5):957-964. doi: 10.1016/j.wasman.2011.12.003

    14. [14]

      ZHANG Ri-xu, JIANG Xu-guang, CHI Yong, YAN Jian-hua. Migration and distribution of heavy metals during co-combustion of pickling sludge and coal[J]. J Fuel Chem Technol, 2015,43(7):790-797. doi: 10.3969/j.issn.0253-2409.2015.07.003 

    15. [15]

      ZHANG R, JIANG X, CHI Y, YAN J. Experimental and thermodynamic study of the partition of Cr, Ni, Cu, Pb, and Mn during co-combustion of pickling sludge and bituminous coal[J]. Energy Fuels, 2016,30(1):690-697. doi: 10.1021/acs.energyfuels.5b02213

    16. [16]

      WU Hong-xiang, ZHAO Zeng-li, HE Fang, LI Hai-bin, WANG Jie. Volatility of heavy metals in co-combustion of sludge with coal and wood[J]. Chin J Environ Eng, 2011,5(11):195-201.  

    17. [17]

      TANG Zi-jun. Study on the migration and distribution characteristics of heavy metals during sludge incineration of sewage treatment plants[D]. Beijing: Chinese Research Academy of Environmental Sciences, 2013. 

    18. [18]

      WANG R, ZHAO Z, YIN Q, LIU J. Mineral transformation and emission behaviors of Cd, Cr, Ni, Pb and Zn during the co-combustion of dried waste activated sludge and lignite[J]. Fuel, 2017,199(1):578-586.  

    19. [19]

      LIU Rui-jiang, ZHANG Ye-wang, WEN Chong-wei, TANG Jian. Study on the design and analysis methods of orthogonal experiment[J]. Exp Technol Manage, 2010,27(9):52-55. doi: 10.3969/j.issn.1002-4956.2010.09.016

    20. [20]

      ZHANG Ri-xu. Study on migration and distribution of heavy metals during co-combustion of pickling sludge and coal[D]. Hangzhou: Zhejiang University, 2016. 

    21. [21]

      CHEN Yong. Study on the partitioning and speciation of Cd and Pb during municipal solid waste incineration[D]. Beijing: Tsinghua University, 2008. 

    22. [22]

      CORELLA J, TOLEDO J M. Incineration of doped sludges in fluidized bed. Fate and partitioning of six targeted heavy metals. I. Pilot plant used and results[J]. J Hazard Mater, 2000,80(1/3):81-105.  

    23. [23]

      MÉNARD Y, ASTHANA A, PATISSON F, SESSIECQ P, ABLITZER D. Thermodynamic study of heavy metals behaviour during municipal waste incineration[J]. Process Saf Environ Prot, 2006,84(4):290-296. doi: 10.1205/psep.05166

    24. [24]

      MENG A, LI Q, JIA J, ZHANG Y. Effect of moisture on partitioning of heavy metals in incineration of municipal solid waste[J]. Chin J Chem Eng, 2012,20(5):1008-1015. doi: 10.1016/S1004-9541(12)60430-3

    25. [25]

      LIU J, FU J, NING X, SUN S, WANG Y, XIE W, HUANG S, ZHONG S. An experimental and thermodynamic equilibrium investigation of the Pb, Zn, Cr, Cu, Mn and Ni partitioning during sewage sludge incineration[J]. J Environ Sci (China), 2015,35:43-54. doi: 10.1016/j.jes.2015.01.027

    26. [26]

      YU J, SUN L, XIANG J, HU S, SU S, QIU J. Vaporization of heavy metals during thermal treatment of model solid waste in a fluidized bed incinerator[J]. Chemosphere, 2012,86(11):1122-1126. doi: 10.1016/j.chemosphere.2011.12.010

    27. [27]

      DAI Xin, LU Ping, ZHU Xiu-ming, LI Ke, WANG Ruo-lin, BU Yu-wei. Investigation on the co-combustion characteristics of sludge and coal under O2/CO2 atmospheres[J]. J Eng Thermophys, 2015,36(6):1376-1380.  

    28. [28]

      ZHANG Yan, CHI Yong, LI Jian-xin, LI Xiao-dong, YAN Jian-hua, CEN Ke-fa. An Experimental study on distribution of heavy metals in incineration of sludge[J]. Power Syst Eng, 2005,21(3):27-29. doi: 10.3969/j.issn.1005-006X.2005.03.012

    29. [29]

      LI Jian-xin, YAN Jian-hua, CHI Yong, ZHANG Ruo-bing, NI Ming-jiang, CEN Ke-fa. Effects of chlorine on the transfer of heavy metals in municipal solid waste (MSW) incineration process[J]. J Fuel Chem Technol, 2003,31(6):579-583. doi: 10.3969/j.issn.0253-2409.2003.06.013 

  • 加载中
    1. [1]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    2. [2]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    3. [3]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    4. [4]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    5. [5]

      Yang Chen Xiuying Wang Nengqin Jia . Ideological and Political Design, Blended Teaching Practice of Physical Chemistry Experiment: Pb-Sn Binary Metal Phase Diagram. University Chemistry, 2025, 40(3): 223-229. doi: 10.12461/PKU.DXHX202405184

    6. [6]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    7. [7]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    8. [8]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    9. [9]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    10. [10]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    11. [11]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    12. [12]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    13. [13]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    14. [14]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    15. [15]

      Chengshan Yuan Xiaolong Li Xiuping Yang Xiangfeng Shao Zitong Liu Xiaolei Wang Yongwen Shen . Standardized Operational Guidelines for Mixed-Solvent Recrystallization in Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 122-127. doi: 10.12461/PKU.DXHX202504073

    16. [16]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    17. [17]

      Yang LiYanan DongZhihong WeiChangzeng YanZhen LiLin HeYuehui Li . Fluoride-promoted Ni-catalyzed cyanation of C–O bond using CO2 and NH3. Chinese Chemical Letters, 2025, 36(5): 110206-. doi: 10.1016/j.cclet.2024.110206

    18. [18]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    19. [19]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    20. [20]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

Metrics
  • PDF Downloads(6)
  • Abstract views(588)
  • HTML views(98)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return