Citation: LI Shu-na, SONG Pei, ZHANG Jin-li, HE Xiao-xia, XIE Yi-xin, ZHANG Ya-gang, WANG Rui-yi, LI Zhi-kai, ZHU Hua-qing. Morphological effect of CeO2-MnOx catalyst on their catalytic performance in lean methane combustion[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(5): 615-624. shu

Morphological effect of CeO2-MnOx catalyst on their catalytic performance in lean methane combustion

  • Corresponding author: LI Shu-na, lishuna165@126.com LI Zhi-kai, lizhikai@sxicc.ac.cn ZHU Hua-qing, zhhq@sxicc.ac.cn
  • Received Date: 8 February 2018
    Revised Date: 8 April 2018

    Fund Project: Natural Science Foundation of Education Department of Shaanxi Province 15JK1491the Natural Science Foundation of Shaanxi Province of China 2016JQ2030the Special Natural Science Foundation of Science and Technology Bureau of Xian City CXY1531WL03the Special Natural Science Foundation of Science and Technology Bureau of Xian City 2017CGWL24the Natural Science Foundation of Shaanxi Province of China 2016JQ2017the National Natural Science Foundation of China 51704240The project was supported by the National Natural Science Foundation of China (51704240, 21703276, 51602253), the Natural Science Foundation of Shaanxi Province of China (2016JQ2030, 2016JQ2017), Natural Science Foundation of Education Department of Shaanxi Province (15JK1491), the Special Natural Science Foundation of Science and Technology Bureau of Xian City (2017CGWL24, CXY1531WL03) and College Students' Innovation and Entrepreneurship Program project of Shaanxi Province in 2017the National Natural Science Foundation of China 21703276the National Natural Science Foundation of China 51602253

Figures(10)

  • Ship-like, oblate spheroid and nano sheet CeO2-MnOx mixed oxides were prepared by hydrothermal method and characterized by N2 sorption, XRD, SEM, TEM, H2-TPR, Raman spectra and XPS. The relationship between the structure of CeO2-MnOx and their catalytic performance in lean methane combustion were then investigated. The results reveal that the catalytic performance of the mixed CeO2-MnOx oxide was greatly depended on its morphology. Among all of the samples, the mixed oblate spheroid CeO2-MnOx oxides with most oxygen vacancies, Ce3+ content and surface active oxygen exhibited the highest activity in lean methane combustion, with a complete CH4 conversion at 540℃. Following it, the mixed ship-like CeO2-MnOx oxides catalyst had 94.05% of the CH4 conversion at 540℃. On the contrast, the mixed nano sheet CeO2-MnOx oxides catalyst presented the lowest catalytic activity with only 89.68% CH4 conversion at the same reaction temprature owing to its lower oxygen vacancies and surface active oxygen.
  • 加载中
    1. [1]

      SU S, BEATH A, GUO H, MALLETT C. An assessment of mine methane mitigation and utilisation technologies[J]. Prog Energy Combust Sci, 2005,31(2):123-170. doi: 10.1016/j.pecs.2004.11.001

    2. [2]

      DEBBAGH M N, LECEA C S M D, PÉREZ-RAMÍREZ J. Catalytic reduction of N2O over steam-activated FeZSM-5 zeolite:Comparison of CH4, CO, and their mixtures as reductants with or without excess O2[J]. Appl Catal B:Environ, 2007,70(1/4):334-341.

    3. [3]

      LUO J J, XU H Y, LIU Y F, CHU W, JIANG C F, ZHAO X S. A facile approach for the preparation of biomorphic CuO-ZrO2 catalyst for catalytic combustion of methane[J]. Appl Catal A:Gen, 2012,423/424:121-129. doi: 10.1016/j.apcata.2012.02.025

    4. [4]

      ZHANG Jia-jin, LI Jian-wei, ZHU Ji-qin, WANG Yue, CHEN Biao-hua. Effect of promoter on the performance of Cu-Mn complex oxide monolithic catalysts for lean methane catalytic combustion[J]. Chin J Catal, 2011,32(8):1380-1386.  

    5. [5]

      SI R, FLYTZANI-STEPHANOPOULOS M. Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction[J]. Angew Chem Int Ed, 2008,47(15):2884-2887. doi: 10.1002/(ISSN)1521-3773

    6. [6]

      TANG X F, CHEN J L, LI Y G, LI Y, XU Y D, SHEN W J. Complete oxidation of formaldehyde over Ag/MnOx-CeO2 catalysts[J]. Chem Eng J, 2006,118(1/2):119-125.  

    7. [7]

      LI H J, QI G, TA N, ZHANG X J, LI W, SHEN W J. Morphological impact of manganese-cerium oxides on ethanol oxidation[J]. Catal Sci Technol, 2011,1(9):1677-1682. doi: 10.1039/c1cy00308a

    8. [8]

      WANG X Y, KANG Q, LI D. Low-temperature catalytic combustion of chlorobenzene over MnOx-CeO2 mixed oxide catalysts[J]. Catal Commun, 2008,9(13):2158-2162. doi: 10.1016/j.catcom.2008.04.021

    9. [9]

      LI J, ZHU P F, ZHOU R X. Effect of the preparation method on the performance of CuO-MnOx-CeO2 catalysts for selective oxidation of CO in H2-rich streams[J]. J Power Sources, 2011,196(22):9590-9598. doi: 10.1016/j.jpowsour.2011.07.052

    10. [10]

      ZHANG Y G, QIN Z F, WANG G F, ZHU H Q, DONG M, LI S N, WU Z W, LI Z K, WU Z H, ZHANG J, HU T D, FAN W B, WANG J G. Catalytic performance of MnOx-NiO composite oxide in lean methane combustion at low temperature[J]. Appl Catal B:Environ, 2013,129(2):172-181.  

    11. [11]

      LI S N, ZHU H Q, QIN Z F, WANG G F, ZHANG Y G, WU Z W, LI Z K, CHEN G, DONG W W, WU Z H, ZHENG L R, ZHANG J, HU T D, WANG J G. Morphologic effects of nano CeO2-TiO2 on the performance of Au/CeO2-TiO2 catalysts in low-temperature CO oxidation[J]. Appl Catal B:Environ, 2014,144(2):498-506.

    12. [12]

      MA C J, WEN Y Y, YUE Q Q, LI A Q, ZHANG N W, GAI H J, ZHENG J B, CHEN B H. Oxygen-vacancy-promoted catalytic wet air oxidation of phenol from MnOx-CeO2[J]. RSC Adv, 2017,7(43):27079-27088. doi: 10.1039/C7RA04037G

    13. [13]

      ZHANG P F, LU H F, ZHOU Y, ZHANG L, WU Z L, YANG S Z, SHI H L, ZHU Q L, CHEN Y F, DAI S. Mesoporous MnCeOx solid solutions for low temperature and selective oxidation of hydrocarbons[J]. Nat Commun, 2015,6:8448-8458. doi: 10.1038/ncomms9448

    14. [14]

      TANG X F, LI Y G, HUANG X M, XU Y D, ZHU H Q, WANG J G, SHEN W J. MnOx-CeO2 mixed oxide catalysts for complete oxidation of formaldehyde:Effect of preparation method and calcination temperature[J]. Appl Catal B:Environ, 2006,62(3/4):265-273.  

    15. [15]

      CEN W L, LIU Y, WU Z B, WANG H Q, WENG X L. A theoretic insight into the catalytic activity promotion of CeO2 surfaces by Mn doping[J]. Phys Chem Chem Phys, 2012,14(16):5769-5777. doi: 10.1039/c2cp00061j

    16. [16]

      FRANCISCO M S P, MASTELARO V R, NASCENTE P A P, FLORENTINO A O. Activity and characterization by XPS, HR-TEM, Raman spectroscopy, and BET surface area of CuO/CeO2-TiO2 catalysts[J]. J Phys Chem B, 2001,105(43):10515-10522. doi: 10.1021/jp0109675

    17. [17]

      LI Shu-na, SHI Qi, LI Xiao-jun, FANG Zhen-hua, SUN Ping, ZHOU Yue-hua, ZHANG Xing-mei, YANG Xiao-hui. Low temperature CO oxidation over the ceria oxide catalysts doped with Fe, Ni and Cu[J]. J Fuel Chem Technol, 2017,45(6):707-713.  

    18. [18]

      LI Lan, HU Geng-shen, LU Ji-qing, LUO Meng-fei. Review of oxygen vacancies in CeO2-doped solid solutions as characterized by Raman spectroscopy[J]. Acta Phys-Chim Sin, 2012,28(5):1012-1020.  

    19. [19]

      HERNÁNDEZ W Y, CENTENO M A, ROMERO-SARRIA F, ODRIOZOLA J A. Synthesis and characterization of Ce1-xEuxO2-x/2 mixed oxides and their catalytic activities for CO oxidation[J]. J Phys Chem C, 2009,113(14):5629-5635. doi: 10.1021/jp8092989

    20. [20]

      HUA G M, ZHANG L D, FEI G T, FANG M. Enhanced catalytic activity induced by defects in mesoporous ceria nanotubes[J]. J Mater Chem, 2012,22(14):6851-6855. doi: 10.1039/c2jm13610d

    21. [21]

      BÊCHE E, CHARVIN P, PERARNAU D, ABANADES S, FLAMANT G. Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz)[J]. Surf Interface Anal, 2008,40(3/4):264-267.  

    22. [22]

      LI S N, ZHANG Y G, LI X J, YANG X H, LI Z K, WANG R Y, ZHU H Q. Preferential oxidation of CO in H2-rich stream over Au/CeO2-NiO catalysts:Effect of the preparation method[J]. Catal Lett, 2018,148(1):328-340. doi: 10.1007/s10562-017-2231-1

    23. [23]

      SKORODUMOVA N V, SIMAK S I, LUNDQVIST B I, ABRIKOSOV I A, JOHANSSON B. Quantum origin of the oxygen storage capability of ceria[J]. Phys Rev Lett, 2002,89(16):166601-1166601-4. doi: 10.1103/PhysRevLett.89.166601

    24. [24]

      YUAN Shan-liang, LAN Hai, BO Qi-fei, ZHANG Biao, XIAO Xi, JIANG Yi. Effect of TiO2 doping on methane catalytic combustion deoxidation of CuMnCe/Al2O3 catalyst[J]. J Fuel Chem Technol, 2017,45(2):243-248.  

    25. [25]

      HAMOUDI S, LARACHI F, ADNOT A, SAYARI A. Characterization of spent MnO2/CeO2 wet oxidation catalyst by TPO-MS, XPS, and S-SIMS[J]. J Catal, 1999,185(2):333-334. doi: 10.1006/jcat.1999.2519

    26. [26]

      DELIMARIS D, IOANNIDES T. VOC oxidation over MnOx-CeO2 catalysts prepared by a combustion method[J]. Appl Catal B:Environ, 2008,84(1/2):303-312.  

    27. [27]

      ZHAO P, WANG C N, HE F, LIU S T. Effect of ceria morphology on the activity of MnOx/CeO2 catalysts for the catalytic combustion of chlorobenzene[J]. RSC Adv, 2014,4(86):45665-45672. doi: 10.1039/C4RA07843H

    28. [28]

      ŚWIATOWSKA J, LAIR V, PEREIRA-NABAIS C, COTE G, MARCUS P, CHAGNES A. XPS, XRD and SEM characterization of a thin ceria layer deposited onto graphite electrode for application in lithium-ion batteries[J]. Appl Surf Sci, 2011,257(21):9110-9119. doi: 10.1016/j.apsusc.2011.05.108

    29. [29]

      TROVARELLI A. Catalytic properties of ceria and CeO-containing materials[J]. Catal Rev, 1996,38(4):439-520. doi: 10.1080/01614949608006464

    30. [30]

      LU H, KONG X, HUANG H, ZHOU Y, CHEN Y. Cu-Mn-Ce ternary mixed-oxide catalysts for catalytic combustion of toluene[J]. J Environ Sci, 2015,32(6):102-107.  

  • 加载中
    1. [1]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    2. [2]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    3. [3]

      Peng Li Yuanying Cui Zhongliao Wang Graham Dawson Chunfeng Shao Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065

    4. [4]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    5. [5]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    8. [8]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    9. [9]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    10. [10]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    11. [11]

      Simin WeiYaqing YangJunjie LiJialin WangJinlu TangNingning WangZhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114

    12. [12]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    13. [13]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    14. [14]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    15. [15]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    16. [16]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    17. [17]

      Houzhen Xiao Mingyu Wang Yong Liu Bangsheng Lao Lingbin Lu Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011

    18. [18]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    19. [19]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    20. [20]

      Hongwei DingJingjing YangYongchen ShuaiDi WeiXueliang LiuGuiying LiLin JinJianliang ShenIn situ preparation of tannin-mediated CeO2@CuS nanocomposites for multimodal wound therapy. Chinese Chemical Letters, 2025, 36(6): 110286-. doi: 10.1016/j.cclet.2024.110286

Metrics
  • PDF Downloads(9)
  • Abstract views(1360)
  • HTML views(308)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return