Citation: Guo Jingbo, Ye Zhaoyong, Fu Xin, Zhang Lanhe, Ma Fang. Recent Advances in Mathematical Modeling of Nitrous Oxide Emissions from Biological Nitrogen Removal Processes[J]. Chemistry, ;2017, 80(3): 266-272, 287. shu

Recent Advances in Mathematical Modeling of Nitrous Oxide Emissions from Biological Nitrogen Removal Processes

  • Corresponding author: Guo Jingbo, guojingbo640@163.com
  • Received Date: 23 August 2016
    Accepted Date: 30 September 2016

Figures(1)

  • Nitrous oxide (N2O) is a significant greenhouse gas and can be produced and emitted from the biological nitrogen removal processes in the wastewater treatment plant (WWTPs). Along with the enhancement of amount and degree of wastewater treatment, the emission of N2O will increase accordingly. The establishments of mathematical models for N2O emissions from the biological nitrogen removal processes in WWTPs have important theoretical and practical significance on the thorough investigations on the mechanisms of N2O production and the development of N2O reduction strategies. The present paper summarized the principals of various biological nitrogen removal processes and systematically elaborated the production mechanisms of N2O and the types, establishment methods and applications of mathematical models simulating N2O emissions. Furthermore, conclusions were achieved based on the research status, and perspectives on future research directions were presented to gain a better modeling of N2O emissions and to provide supports for the reduction of N2O emission, the optimization of the biological nitrogen removal processes and the sustainable development of WWTPs.
  • 加载中
    1. [1]

      IPCC. Working group I contribution to the assessment report climate change 2013:the physical science basis:final draft underlying scientific-technical assessment. Cambridge, UK/New York:Cambridge University Press; 2013.

    2. [2]

      R W Portmann, J S Daniel, A R Ravishankara. Philos. Trans. R. Soc. B, 2012, 367(1593):1256-1264. 

    3. [3]

      A Ribera-Guardia, E Kassotaki, O Gutierrez et al. Proc. Biochem., 2014, 49(12):2228-2234. 

    4. [4]

      D de Haas, K J Hartley. In Proceedings:Sewage Management-Risk Assessment and Triple Bottom Line; Queensland Environmental Protection Agency:Cairns, 2004:5-7.

    5. [5]

      M R Daelman, E M van Voorthuizen, L G van Dongen et al. Water Sci. Technol., 2013, 67(10):2350-2355. 

    6. [6]

      L Ye, B J Ni, Y Law et al. Water Res., 2014, 48(1):257-268.

    7. [7]

      A Rodriguez-Caballero, A Ribera, J L Balcázar et al. Bioresour. Technol., 2013, 139(7):195-202.

    8. [8]

       

    9. [9]

    10. [10]

       

    11. [11]

       

    12. [12]

      M Pijuan, J Torà, A Rodrĺguez-Caballero et al. Water Res., 2014, 49(1):23-33.

    13. [13]

       

    14. [14]

       

    15. [15]

       

    16. [16]

       

    17. [17]

       

    18. [18]

       

    19. [19]

       

    20. [20]

       

    21. [21]

      M J Kampschreur, W R L van der Star, H A Wielders et al. Water Res., 2008, 42(3):812-826. 

    22. [22]

       

    23. [23]

       

    24. [24]

       

    25. [25]

    26. [26]

      G Tallec, J Garnier, G Billen et al. Water Res., 2006, 40(15):2972-2980. 

    27. [27]

      K Chandran, L Y Stein, M G Klotz et al. Biochem. Soc. Transac., 2011, 39(6):1832-1837. 

    28. [28]

      M J Kampschreur, H Temmink, R Kleerebezem et al. Water Res., 2009, 43(17):4093-4103. 

    29. [29]

      H J Lu, K Chandran. Biotechnol. Bioeng., 2010, 106(3):390-398. 

    30. [30]

      Y T Pan, L Ye, B J Ni et al. Water Res., 2010, 46(15):4832-4840.

    31. [31]

      Y Y Law, B J Ni, P Lant et al. Water Res., 2012, 46(10):3409-3419. 

    32. [32]

      B J Ni, L Ye, Y Y Law et al. Environ. Sci. Technol., 2013, 47(14):7795-7803. 

    33. [33]

      Y Y Law, P Lant, Z G Yuan. Environ. Sci. Technol., 2013, 47(13):7186-7194.

    34. [34]

      R Yu, M J Kampschreur, M C M van Loosdrecht et al. Environ. Sci. Technol., 2010, 44(4):1313-1319. 

    35. [35]

      L Y Stein. Methods Enzymol., 2011, 486:131-152. 

    36. [36]

      B J Ni, Z G Yuan, K Chandran et al. Biotechnol. Bioeng., 2013, 110(1):153-163. 

    37. [37]

      Y Pan, B J Ni, P L Bond et al. Water Res., 47(10):3273-3281.

    38. [38]

      Z Hu, J Zhang, H J Xie et al. Enzyme Microb. Technol., 2011, 49(2):237-245. 

    39. [39]

      Z Hu, J Zhang, H J Xie et al. Bioresour. Technol., 2011, 102(9):5486-5491. 

    40. [40]

       

    41. [41]

      J Foley, D de Haas, Z G Yuan et al. Water Res., 2010, 44(3):831-844. 

    42. [42]

      Y Zhou, M Pijuan, R J Zeng et al. Environ. Sci. Technol., 2008, 42(22):8260-8265. 

    43. [43]

      A Rodriguez-Caballero, M Pijuan. Water Res., 2013, 47(9):3131-3140. 

    44. [44]

      X C Quan, M C Zhang, P G Lawlor et al. Water Res., 2012, 46(16):4981-4990. 

    45. [45]

      A Rodriguez-Caballero, I Aymericha, M Pochb et al. Sci. Tot. Environ., 2014, 493C (10):384-391.

    46. [46]

      C M Castro-Barros, M R Daelman, K E Mampaey et al. Water Res., 2015, 68:793-803. 

    47. [47]

      J H Ahn, S P Kim, H K Park et al. Environ. Sci. Technol., 2010, 44(12):4505-4511. 

    48. [48]

      B J Ni, M Ruscalleda, C Pellicer-Nacher et al. Environ. Sci. Technol., 2011, 45(18):7768-7776. 

    49. [49]

      M Pocquet, I Queinnec, M Spérandio. In:Proceedings 11th IWA Conference on Instrumentation, Control and Automation, 2013:99-123.

    50. [50]

      L Guo, P A Vanrolleghem. Bioproc. Biosyst. Eng., 2014, 37(2):151-163. 

    51. [51]

      Inventory of U.S. Greenhouse Gas Emissions and Sinks:1990-2010, EPA 430-R-12-001. U. S. Environmental Protection Agency, Washington, D.C., 2012.

    52. [52]

      M Henze, C P L Jr Grady, W Gujer et al. Activated Sludge Model No. 1. London:IAWPRC Scientific and Technical Reports No. 1, 1987

    53. [53]

      W Gujer, M Henze, T Mino et al. Water Sci. Technol., 1995, (2):1-11. 

    54. [54]

      W Gujer, M Henze, T Mino et al. Water Sci. Technol., 1999, 39(1):183-193. 

    55. [55]

      E Kotlar, B Tartakovsky, Y Argaman et al. J. Biotechnol., 1996, 51(3):251-258. 

    56. [56]

      H Wicht. Water Sci. Technol., 2015, 34(5/6):99-106.

    57. [57]

      W C Hiatt, C P L Grady. Water Environ. Res., 2008, 80(11):2145-2156. 

    58. [58]

      Y Pan, B J Ni, Z G Yuan. Environ. Sci. Technol., 2013, 47(19), 11083-11091.

    59. [59]

      Y Pan, B J Ni, H Lu et al. Water Res., 2015, 71(15):21-31. 

    60. [60]

      M Spérandio, M Pocquet, L S Guo et al. Bioproc. Biosyst. Eng., 2016, (3):493-510.

    61. [61]

      M Pocquet, Z Wu, I Queinnec et al. Water Res., 2016, 88:948-959. 

    62. [62]

      L Peng, B J Ni, D Erler et al. Water Res., 2014, 66:12-21. 

    63. [63]

      P Wunderlin, M F Lehmann, H Siegrist et al. Environ. Sci. Technol., 2013, 47(3):1339-1348.

    64. [64]

      B J Ni, Y T Pan, A van Den et al. Environ. Sci. Technol., 2015, 49(15):9176-9184. 

    65. [65]

      B J Ni, L Peng, Y Y Law et al. Environ. Sci. Technol., 2014, 48(7):3916-3924. 

    66. [66]

      Y Y Law, L Ye, Y T Pan et al. Philos. Transac. R. Soc. B, 2012, 367(1593):1265-1277. 

    67. [67]

      J Desloover, H De Clippeleir, P Boeckx et al. Water Res., 2011, 45(9):2811-2821. 

    68. [68]

      J Bollon, A Filali, Y Fayolle et al. Sci. Tot. Environ., 2016, 563-664:320-328.

    69. [69]

      S C Sun, X Cheng, D Z Sun. Int. Biodeter. Biodegr., 2013, 85:545-549. 

    70. [70]

      M R Daelman, B De Baets, M C van Loosdrecht et al. Water Res., 2013, 47(9):3120-3130. 

  • 加载中
    1. [1]

      Qianqian LiuXing DuWanfei LiWei-Lin DaiBo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-0. doi: 10.3866/PKU.WHXB202311016

    2. [2]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    3. [3]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    4. [4]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    5. [5]

      Wen Shi Jiuxing Jiang . 化学中的数学方法课程建设探索. University Chemistry, 2025, 40(6): 48-53. doi: 10.12461/PKU.DXHX202408088

    6. [6]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    7. [7]

      Xianghai SongXiaoying LiuZhixiang RenXiang LiuMei WangYuanfeng WuWeiqiang ZhouZhi ZhuPengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055

    8. [8]

      Kunyao PengXianbin WangXingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274

    9. [9]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    10. [10]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    11. [11]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    12. [12]

      Jijoe Samuel Prabagar Kumbam Lingeshwar Reddy Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564

    13. [13]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    14. [14]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    15. [15]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    16. [16]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    17. [17]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    18. [18]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    19. [19]

      Jianan Zhang Mengzhen Xu Jiamin Liu Yufei He . 面向“双碳”目标的脱氯吸附剂开发研究型综合实验设计. University Chemistry, 2025, 40(6): 248-255. doi: 10.12461/PKU.DXHX202408068

    20. [20]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

Metrics
  • PDF Downloads(10)
  • Abstract views(646)
  • HTML views(86)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return