Citation: CHENG Jun-xia, ZHU Ya-ming, GAO Li-juan, ZHAO Xue-fei. Evolution of coke microcrystalline structure during calcination process of coal-based needle coke[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(9): 1071-1078. shu

Evolution of coke microcrystalline structure during calcination process of coal-based needle coke

  • Corresponding author: ZHAO Xue-fei, zhao_xuefei@sohu.com
  • Received Date: 21 July 2020
    Revised Date: 25 August 2020

    Fund Project: Open Fund of University of Science and Technology Liaoning USTLKFSY201701Youth Fund of University of Science and Technology Liaoning 2016QN25Youth Fund of University of Science and Technology Liaoning 2017QN06Liaoning Provincial Department of Education Project 2017LNQN04Excellent Talent Training Project of University of Science and Technology Liaoning 2018RC07The project was supported by the National Natural Science Foundation of China (U1361126), Natural Science Foundation of Liaoning Province (20180551218), Liaoning Provincial Department of Education Project (2017LNQN04), Excellent Talent Training Project of University of Science and Technology Liaoning (2018RC07), Youth Fund of University of Science and Technology Liaoning (2016QN25, 2017QN06) and Open Fund of University of Science and Technology Liaoning (USTLKFSY201701)The project was supported by the National Natural Science Foundation of China U1361126Natural Science Foundation of Liaoning Province 20180551218

Figures(5)

  • The evolution of the microstructure of needle coke during calcination process has been determined by FT-IR, XRD, and Raman spectroscopy, in which the needle cokes were obtained by calcination at heating rates of 2 and 5 ℃/ min with the coal-based green needle coke as the raw materials, respectively. The results show that the diameter of carbon microcrystal La, the height of carbon microcrystal Lc, the lamella content in the crystal (N), the average carbon number in each layer (n), and the content of tending regular graphite micro crystals (Ig) in the needle coke increase gradually with the rising of the calcination temperature. However, the value of Lc appears an "inflection point" due to the escape of volatiles and shrinkage of green needle coke. The layer spacing d002 fluctuates due to the random "layer fault" between the new layer and the original layer. The higher the heating rate, the smaller the characteristic carbon microcrystal parameters (La, Lc, N, and n) of needle coke, and the latter the temperature of "inflection point" for Lc appears. Also, the content of perfect graphite microcrystallite (IG/Iall) increases gradually with the increasing of temperature, and the defective graphite microcrystallites transforms to each other continuously during calcination process, finally being developed into the graphite microcrystals. The average bond length α of C-C bond in the carbon planes would become larger with the increase of calcination temperature.
  • 加载中
    1. [1]

      TAMAS U, GUBICZA J, GABOR R, JENÖ G, CRISTIAN P. Microstructure of carbon blacks determined by X-ray diffraction profile analysis[J]. Carbon, 2002,40(6):929-937. doi: 10.1016/S0008-6223(01)00224-X

    2. [2]

      MARTINS M A, OLIVEIRA L S, FRANCE A S. Modeling and simulation of petroleum coke calcination in rotary kilns[J]. Fuel, 2001,80(11):1611-1622. doi: 10.1016/S0016-2361(01)00032-1

    3. [3]

      XIAO J, HUANG J, ZhONG Q, ZHANG H L, LI J. Modeling and simulation of petroleum coke calcination in pot calciner using two-fluid model[J]. J Metals, 2016,68(2):643-655.  

    4. [4]

      KAKUTA M, TSUCHIYA N, TANAKA H, NOGUCHI K. Structural changes during graphitization of petroleum coke[J]. Carbon, 1984,22(2)237.  

    5. [5]

      WALLOUCH R W, FAIR F V. Kinetics of the coke shrinkage process during calcinations[J]. Carbon, 1980,13:147-153. doi: 10.1016/0008-6223(80)90023-8

    6. [6]

      RHEDEY P J, NADKARNI S K. Coker feedstock characteristics and calcined coke properties[J]. J Metals, 2013,36(5):22-25. doi: 10.1007/BF03338449

    7. [7]

      HEINTA E A. Effect of calcination rate on petroleum coke properties[J]. Carbon, 1995,33(6):817-820. doi: 10.1016/0008-6223(95)00002-U

    8. [8]

      MITSUNAO K, YOSHIHARU O, CAI Xue-min. Structural changes during calcination of petroleum coke (Part 1)-Research on the heat treatment changes of coke's structure, organization and specific gravity[J]. Carbon Technol, 1983(2):16-20.  

    9. [9]

      SACHSSE H. Encyclopaedia of Chemical Technolog[M]. NewYork:Ohn Wiley and Sons, 1990.

    10. [10]

      RAGAN S, MATSH H. Effects of calcination upon properties of needle-cokes[J]. J Mater Sci, 1983,12(18):3695-3705. doi: 10.1007/BF00540742

    11. [11]

      HU Jian-hong, Fundamental study on coal tar pitch refining and preparation of needle coke[D]. Beijing: China University of Minning & Tachnology, 2019.

    12. [12]

      ISMAGILOV Z R, SOZINOV S A, POPOVA A N, ZAPOTIN V P. Structural analysis of needle coke[J]. Coke Chem, 2019,62(4):135-142. doi: 10.3103/S1068364X19040021

    13. [13]

      SAOWADEE N, AGERSTED K, BOWEN J R. Lattice constant measurement from electron backscatter diffraction patterns[J]. J Microsc, 2017,266(2):200-210. doi: 10.1111/jmi.12529

    14. [14]

      ZENOU V Y, SNEJANA B. Microstructural analysis of undoped and moderately Sc-doped TiO2, anatase nanoparticles using Scherrer equation and Debye function analysis[J]. Mater Charact, 2018,144:287-296. doi: 10.1016/j.matchar.2018.07.022

    15. [15]

      SARKAR A, DASGUPTA K, BARAT P, MUKHERJEE P, SATHIYAMOORTHY D. Studies on neon irradiated amorphous carbon using X-ray diffraction technique[J]. Int J Mod Phys B, 2008,22(7):865-875. doi: 10.1142/S0217979208038119

    16. [16]

      BALACHANDRAN M. Study of stacking structure of amorphous carbon by X-ray diffraction technique[J]. Int J Electrochem Sci, 2012,7(4):3127-3134. doi: 10.1016/j.jpowsour.2012.01.007

    17. [17]

      MANOJ B. Investigation of nanocrystalline structure in selected carbonaceous materials[J]. Int J Min Met Mater, 2014,21(9):940-946. doi: 10.1007/s12613-014-0993-7

    18. [18]

      LIU Dong-dong, GAO Ji-hui, WU Shao-hua, QIN Yu-kun. XRD and Raman characterization of microstructure changes of char during pyrolysis[J]. J Harbin Inst Technol, 2016,48(7):39-45.  

    19. [19]

      HAN W H, CAI Y X, LI X H, WANG J, WANG J, LI K, WEI X. Raman spectroscopy analysis of carbon structural evolution of diesel particulate matters with the treatment of nonthermal plasma[J]. Spectrosc Spect Anal, 2012,32(32):2152-2156.  

    20. [20]

      DEWA K, ONO K, MATSUKAWA Y, TAKAHASHI K, SAITO Y, MATSUSHITA Y AOKI H, ERA K, AOKI T, YAMAGUCHI T. Determining the structure of carbon black using Raman spectroscopy and X-ray diffraction[J]. Carbon, 2017,114(4):132-138.  

    21. [21]

      XIA Song-xun. Research on petroleum coke calcining process[D]. Changsha: Central South University, 2012. 

    22. [22]

      CAO Jia-hui, SHEN Jun, WANG Yu-gao, LIU Gang, LI Rui-feng, XU Qing-bai. Changes in leachable content of polycyclic aromatic hydrocarbons before and after mixing petroleum pitch with coal tar pitch[J]. Petrochem Technol, 2019,48(7):702-708.  

    23. [23]

      LIN D, QIU P, XIE X, ZHAO Y. Chemical structure and pyrolysis characteristics of demineralized Zhundong coal[J]. Energy Source, 2017,27:1-6. doi: 10.1080/15567036.2017.1403504

    24. [24]

      LIU Wan-yue, LIU Qin-pu, LIU Lin-song, LIU Di. Study on FT-IR features of middle and high rank coal structure in north part of Qinshui Basin[J]. Coal Sci Technol, 2019,47(2):186-192.  

    25. [25]

      SAIKIA B K, BORUAH R K, GOGOI P K. FT-IR and XRD analysis of coal from Makum coalfield of Assam[J]. J Earth Syst Sci, 2007,116(6):575-579. doi: 10.1007/s12040-007-0052-0

    26. [26]

      POLITIS T G, NAZEM F F, FAN You-zhi. The calcination mechanism of needle coke[J]. Carbon Technol, 1992(3):23-24.  

    27. [27]

      WHITTAKER M P, MILLER F C, FRITZ H C. Structural changes accompanying coke calcinations[J]. Ind Eng Chem Prod Res Dev, 1970,9(2):187-190. doi: 10.1021/i360034a014

    28. [28]

      KIM J D, ROH J S, KIM M S. Effect of carbonization temperature on crystalline structure and properties of isotropic pitch-based carbon fiber[J]. Carbon Lett, 2017,21:51-60. doi: 10.5714/CL.2017.21.051

    29. [29]

      SHI H, REMIMERS N, DAHN J R. Structure-refinement program for disordered carbons[J]. J Appl Crystallogr, 1993,26:827-836. doi: 10.1107/S0021889893003784

    30. [30]

      SHI H. Disordered carbons and battery applications[D]. Burnaby: Simon Frasier University, 1993.

    31. [31]

      IWASHITA N, INAGAKI M. Relations between structural parameters obtained by X-Ray powder diffraction of various carbon materials[J]. Carbon, 1993,31(7):1107-1113. doi: 10.1016/0008-6223(93)90063-G

    32. [32]

      NAKAMIZO M, KAMMERECK R, WALKER P L. Laser raman studies on carbons[J]. Carbon, 1974,12(3):259-267. doi: 10.1016/0008-6223(74)90068-2

    33. [33]

      GUPTA A K, RUISSIN T J, GUTIE H R, EKLUND P C. Probing grapheneedgesr, viar, Raman scattering[J]. ACS Nano, 2009,3(1):45-52.

    34. [34]

      CHEN Shi, SHI Yan-ping, WU Qi-lin. Microstructual evolution during preoxidation, carbonization and graphitization of PAN fiber[J]. New Chem Mater, 2016,44(5):121-123.  

    35. [35]

      GRAF D, MOLITOR F, ENSSLIN K. Spatially resolved Raman spectroscopy of single -and Few-Layer Graphene[J]. Nano Lett, 2007,7(2):238-242. doi: 10.1021/nl061702a

    36. [36]

      FITZER E. Some remarks on Raman spectroscopy of carbon structures[J]. High Temp High Press, 1988,20:449-454.

    37. [37]

      HUA Zhong, WANG Yue-mei, XIAO Li, QIN Zheng-kun, FAN Wen-ji. Relations beltween hybrid C-C bond length and structure parameters of PAN-based carbon fibers[J]. New Chem Mater, 2005,20(3):274-277.  

    38. [38]

      SHI Yan-ping. Raman spectroscopy to study the microstructure and properties of carbon fiber[D]. Shanghai: Donghua University, 2011. 

    39. [39]

      KO T H. Raman spectrum of modified PAN-based carbon fibers during graphitization[J]. J Appl Polym Sci, 1996,59(4):577-580. doi: 10.1002/(SICI)1097-4628(19960124)59:4<577::AID-APP2>3.0.CO;2-Q

    40. [40]

      BU H, ZHAO M, WANG A. WANG X First-principles prediction of the transition from graphdiyne to a superlattice of carbon nanotubes and graphenenanoribbons[J]. Carbon, 2013,65:341-348. doi: 10.1016/j.carbon.2013.08.035

    41. [41]

      SHEN Zeng-min. New Carbon Materials[M]. Beijing: Chemical Industry Press, 2003.

  • 加载中
    1. [1]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    2. [2]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    3. [3]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    4. [4]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    5. [5]

      Shu TianWenxin HuangJunrui HuHuiling WangZhipeng ZhangLiying XuJunrong LiYao Sun . Exploring the frontiers of plant health: Harnessing NIR fluorescence and surface-enhanced Raman scattering modalities for innovative detection. Chinese Chemical Letters, 2025, 36(3): 110336-. doi: 10.1016/j.cclet.2024.110336

    6. [6]

      Chunhui ZhangJie WangJieyang ZhanRunmin YangGuanggang GaoJiayuan ZhangLinlin FanMengqi WangHong Liu . Highly sensitive hydrazine detection through a novel Raman scattering quenching mechanism enabled by a crystalline and noble metal–free polyoxometalate substrate. Chinese Chemical Letters, 2025, 36(3): 109719-. doi: 10.1016/j.cclet.2024.109719

    7. [7]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    8. [8]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    9. [9]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    10. [10]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    11. [11]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    12. [12]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    13. [13]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    14. [14]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    15. [15]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    16. [16]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    17. [17]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    18. [18]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    19. [19]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    20. [20]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

Metrics
  • PDF Downloads(16)
  • Abstract views(2262)
  • HTML views(516)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return