Evolution of coke microcrystalline structure during calcination process of coal-based needle coke
- Corresponding author: ZHAO Xue-fei, zhao_xuefei@sohu.com
Citation:
CHENG Jun-xia, ZHU Ya-ming, GAO Li-juan, ZHAO Xue-fei. Evolution of coke microcrystalline structure during calcination process of coal-based needle coke[J]. Journal of Fuel Chemistry and Technology,
;2020, 48(9): 1071-1078.
TAMAS U, GUBICZA J, GABOR R, JENÖ G, CRISTIAN P. Microstructure of carbon blacks determined by X-ray diffraction profile analysis[J]. Carbon, 2002,40(6):929-937. doi: 10.1016/S0008-6223(01)00224-X
MARTINS M A, OLIVEIRA L S, FRANCE A S. Modeling and simulation of petroleum coke calcination in rotary kilns[J]. Fuel, 2001,80(11):1611-1622. doi: 10.1016/S0016-2361(01)00032-1
XIAO J, HUANG J, ZhONG Q, ZHANG H L, LI J. Modeling and simulation of petroleum coke calcination in pot calciner using two-fluid model[J]. J Metals, 2016,68(2):643-655.
KAKUTA M, TSUCHIYA N, TANAKA H, NOGUCHI K. Structural changes during graphitization of petroleum coke[J]. Carbon, 1984,22(2)237.
WALLOUCH R W, FAIR F V. Kinetics of the coke shrinkage process during calcinations[J]. Carbon, 1980,13:147-153. doi: 10.1016/0008-6223(80)90023-8
RHEDEY P J, NADKARNI S K. Coker feedstock characteristics and calcined coke properties[J]. J Metals, 2013,36(5):22-25. doi: 10.1007/BF03338449
HEINTA E A. Effect of calcination rate on petroleum coke properties[J]. Carbon, 1995,33(6):817-820. doi: 10.1016/0008-6223(95)00002-U
MITSUNAO K, YOSHIHARU O, CAI Xue-min. Structural changes during calcination of petroleum coke (Part 1)-Research on the heat treatment changes of coke's structure, organization and specific gravity[J]. Carbon Technol, 1983(2):16-20.
SACHSSE H. Encyclopaedia of Chemical Technolog[M]. NewYork:Ohn Wiley and Sons, 1990.
RAGAN S, MATSH H. Effects of calcination upon properties of needle-cokes[J]. J Mater Sci, 1983,12(18):3695-3705. doi: 10.1007/BF00540742
HU Jian-hong, Fundamental study on coal tar pitch refining and preparation of needle coke[D]. Beijing: China University of Minning & Tachnology, 2019.
ISMAGILOV Z R, SOZINOV S A, POPOVA A N, ZAPOTIN V P. Structural analysis of needle coke[J]. Coke Chem, 2019,62(4):135-142. doi: 10.3103/S1068364X19040021
SAOWADEE N, AGERSTED K, BOWEN J R. Lattice constant measurement from electron backscatter diffraction patterns[J]. J Microsc, 2017,266(2):200-210. doi: 10.1111/jmi.12529
ZENOU V Y, SNEJANA B. Microstructural analysis of undoped and moderately Sc-doped TiO2, anatase nanoparticles using Scherrer equation and Debye function analysis[J]. Mater Charact, 2018,144:287-296. doi: 10.1016/j.matchar.2018.07.022
SARKAR A, DASGUPTA K, BARAT P, MUKHERJEE P, SATHIYAMOORTHY D. Studies on neon irradiated amorphous carbon using X-ray diffraction technique[J]. Int J Mod Phys B, 2008,22(7):865-875. doi: 10.1142/S0217979208038119
BALACHANDRAN M. Study of stacking structure of amorphous carbon by X-ray diffraction technique[J]. Int J Electrochem Sci, 2012,7(4):3127-3134. doi: 10.1016/j.jpowsour.2012.01.007
MANOJ B. Investigation of nanocrystalline structure in selected carbonaceous materials[J]. Int J Min Met Mater, 2014,21(9):940-946. doi: 10.1007/s12613-014-0993-7
LIU Dong-dong, GAO Ji-hui, WU Shao-hua, QIN Yu-kun. XRD and Raman characterization of microstructure changes of char during pyrolysis[J]. J Harbin Inst Technol, 2016,48(7):39-45.
HAN W H, CAI Y X, LI X H, WANG J, WANG J, LI K, WEI X. Raman spectroscopy analysis of carbon structural evolution of diesel particulate matters with the treatment of nonthermal plasma[J]. Spectrosc Spect Anal, 2012,32(32):2152-2156.
DEWA K, ONO K, MATSUKAWA Y, TAKAHASHI K, SAITO Y, MATSUSHITA Y AOKI H, ERA K, AOKI T, YAMAGUCHI T. Determining the structure of carbon black using Raman spectroscopy and X-ray diffraction[J]. Carbon, 2017,114(4):132-138.
XIA Song-xun. Research on petroleum coke calcining process[D]. Changsha: Central South University, 2012.
CAO Jia-hui, SHEN Jun, WANG Yu-gao, LIU Gang, LI Rui-feng, XU Qing-bai. Changes in leachable content of polycyclic aromatic hydrocarbons before and after mixing petroleum pitch with coal tar pitch[J]. Petrochem Technol, 2019,48(7):702-708.
LIN D, QIU P, XIE X, ZHAO Y. Chemical structure and pyrolysis characteristics of demineralized Zhundong coal[J]. Energy Source, 2017,27:1-6. doi: 10.1080/15567036.2017.1403504
LIU Wan-yue, LIU Qin-pu, LIU Lin-song, LIU Di. Study on FT-IR features of middle and high rank coal structure in north part of Qinshui Basin[J]. Coal Sci Technol, 2019,47(2):186-192.
SAIKIA B K, BORUAH R K, GOGOI P K. FT-IR and XRD analysis of coal from Makum coalfield of Assam[J]. J Earth Syst Sci, 2007,116(6):575-579. doi: 10.1007/s12040-007-0052-0
POLITIS T G, NAZEM F F, FAN You-zhi. The calcination mechanism of needle coke[J]. Carbon Technol, 1992(3):23-24.
WHITTAKER M P, MILLER F C, FRITZ H C. Structural changes accompanying coke calcinations[J]. Ind Eng Chem Prod Res Dev, 1970,9(2):187-190. doi: 10.1021/i360034a014
KIM J D, ROH J S, KIM M S. Effect of carbonization temperature on crystalline structure and properties of isotropic pitch-based carbon fiber[J]. Carbon Lett, 2017,21:51-60. doi: 10.5714/CL.2017.21.051
SHI H, REMIMERS N, DAHN J R. Structure-refinement program for disordered carbons[J]. J Appl Crystallogr, 1993,26:827-836. doi: 10.1107/S0021889893003784
SHI H. Disordered carbons and battery applications[D]. Burnaby: Simon Frasier University, 1993.
IWASHITA N, INAGAKI M. Relations between structural parameters obtained by X-Ray powder diffraction of various carbon materials[J]. Carbon, 1993,31(7):1107-1113. doi: 10.1016/0008-6223(93)90063-G
NAKAMIZO M, KAMMERECK R, WALKER P L. Laser raman studies on carbons[J]. Carbon, 1974,12(3):259-267. doi: 10.1016/0008-6223(74)90068-2
GUPTA A K, RUISSIN T J, GUTIE H R, EKLUND P C. Probing grapheneedgesr, viar, Raman scattering[J]. ACS Nano, 2009,3(1):45-52.
CHEN Shi, SHI Yan-ping, WU Qi-lin. Microstructual evolution during preoxidation, carbonization and graphitization of PAN fiber[J]. New Chem Mater, 2016,44(5):121-123.
GRAF D, MOLITOR F, ENSSLIN K. Spatially resolved Raman spectroscopy of single -and Few-Layer Graphene[J]. Nano Lett, 2007,7(2):238-242. doi: 10.1021/nl061702a
FITZER E. Some remarks on Raman spectroscopy of carbon structures[J]. High Temp High Press, 1988,20:449-454.
HUA Zhong, WANG Yue-mei, XIAO Li, QIN Zheng-kun, FAN Wen-ji. Relations beltween hybrid C-C bond length and structure parameters of PAN-based carbon fibers[J]. New Chem Mater, 2005,20(3):274-277.
SHI Yan-ping. Raman spectroscopy to study the microstructure and properties of carbon fiber[D]. Shanghai: Donghua University, 2011.
KO T H. Raman spectrum of modified PAN-based carbon fibers during graphitization[J]. J Appl Polym Sci, 1996,59(4):577-580. doi: 10.1002/(SICI)1097-4628(19960124)59:4<577::AID-APP2>3.0.CO;2-Q
BU H, ZHAO M, WANG A. WANG X First-principles prediction of the transition from graphdiyne to a superlattice of carbon nanotubes and graphenenanoribbons[J]. Carbon, 2013,65:341-348. doi: 10.1016/j.carbon.2013.08.035
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
Ce Liang , Qiuhui Sun , Adel Al-Salihy , Mengxin Chen , Ping Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306
Chengde Wang , Liping Huang , Shanshan Wang , Lihao Wu , Yi Wang , Jun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383
Huihui LIU , Baichuan ZHAO , Chuanhui WANG , Zhi WANG , Congyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059
Shu Tian , Wenxin Huang , Junrui Hu , Huiling Wang , Zhipeng Zhang , Liying Xu , Junrong Li , Yao Sun . Exploring the frontiers of plant health: Harnessing NIR fluorescence and surface-enhanced Raman scattering modalities for innovative detection. Chinese Chemical Letters, 2025, 36(3): 110336-. doi: 10.1016/j.cclet.2024.110336
Chunhui Zhang , Jie Wang , Jieyang Zhan , Runmin Yang , Guanggang Gao , Jiayuan Zhang , Linlin Fan , Mengqi Wang , Hong Liu . Highly sensitive hydrazine detection through a novel Raman scattering quenching mechanism enabled by a crystalline and noble metal–free polyoxometalate substrate. Chinese Chemical Letters, 2025, 36(3): 109719-. doi: 10.1016/j.cclet.2024.109719
Qinghong Zhang , Qiao Zhao , Xiaodi Wu , Li Wang , Kairui Shen , Yuchen Hua , Cheng Gao , Yu Zhang , Mei Peng , Kai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167
Yinyin Qian , Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
Yadan Luo , Hao Zheng , Xin Li , Fengmin Li , Hua Tang , Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052
Zhicheng JU , Wenxuan FU , Baoyan WANG , Ao LUO , Jiangmin JIANG , Yueli SHI , Yongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363
Bowen Yang , Rui Wang , Benjian Xin , Lili Liu , Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024
Rui Li , Jiayu Zhang , Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
Linhan Tian , Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056
Pengzi Wang , Wenjing Xiao , Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090
Jiaqi AN , Yunle LIU , Jianxuan SHANG , Yan GUO , Ce LIU , Fanlong ZENG , Anyang LI , Wenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072
Hui Wang , Abdelkader Labidi , Menghan Ren , Feroz Shaik , Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039
Ping Song , Nan Zhang , Jie Wang , Rui Yan , Zhiqiang Wang , Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087
(a): 2 ℃/min; (b): 5 ℃/min; (c): NC-2-700 002 peak-fitting spectra; (d): NC-5-700 002 peak-fitting spectra
(a): 2 ℃/min; (b): 5 ℃/min; (c): curve-fitted Raman spectra of NC-2-700; (d): curve-fitted Raman spectra of NC-5-700