Citation: Wang Hongmei, Bai Jin, Yang Lina, Li Jian. Research Progress in Catalytic Hydrodesulfurization Mechanism of Transition Metal Phosphides[J]. Chemistry, ;2017, 80(4): 349-355. shu

Research Progress in Catalytic Hydrodesulfurization Mechanism of Transition Metal Phosphides

  • Corresponding author: Bai Jin, baijin_fy@163.com
  • Received Date: 8 August 2016
    Accepted Date: 15 November 2016

Figures(2)

  • In this paper the mechanism of the hydrodesulfurization (HDS) reaction of sulfur-containing compounds over bulk transition metal phosphide catalysts, supported transition metal phosphide catalysts, and modified transition metal phosphide catalysts were reviewed. The structure-activity relationships of catalysts, the influence of different types of catalysts on the reaction paths of sulfur-containing compounds over catalysts were also discussed in detail. The calculation of rate constant of different HDS steps over phosphide catalyst led to a better understanding of HDS reaction steps. These results can also help us to understand the reaction kinetics and reaction network of sulfur-containing compounds over phosphide catalysts, which offers an important academic value and general guiding significance for the development and application of new-style deep HDS catalyst.
  • 加载中
    1. [1]

      E Muthuswamy, G H L Savithra, S L Brock. Acs. Nano, 2011, 5(3): 2402~2411. 

    2. [2]

      R Prins, M E Bussell. Catal. Lett., 2012, 142(12): 1413~1436. 

    3. [3]

      F Bataille, J L Lemberton, P Michaud et al. J. Catal., 2000, 191: 409~422. 

    4. [4]

      T Weber, J A R van Veen. Catal. Today, 2008, 130: 170~177. 

    5. [5]

      G H Singhal, R L Espino, J E Sobel. J. Catal., 1981, 67: 446~456. 

    6. [6]

      T Todorova, R Prins, T Weber. J. Catal., 2007, 246: 109~117. 

    7. [7]

      R R Chianelli. Catal. Rev. Sci. Eng., 1984, 26: 361~393.

    8. [8]

      T Kawai, K K Bando, Y K Lee et al. J. Catal., 2006, 241(1): 20~24. 

    9. [9]

      T Wada, K K Bando, S T Oyama et al. Chem. Lett., 2012, 41: 1238~1240. 

    10. [10]

      W R A M Robinson, J N M van Gestel, T I Korányi et al. J. Catal., 1996, 161: 539~550. 

    11. [11]

      W Li, B Dhandapani, S T Oyama. Chem. Lett., 1998, 1998(3):207~208.

    12. [12]

      Y K Lee, S T Oyama. J. Catal., 2006, 239(2): 376~389. 

    13. [13]

      S T Oyama, Y K Lee. J. Catal., 2008, 258(2): 393~400. 

    14. [14]

      S T Oyama, H Y Zhao, H J Freund et al. J. Catal., 2012, 285: 1~5. 

    15. [15]

      H Y Zhao, S T Oyama, H-J Freund et al. Appl. Catal. B, 2015, 164: 204~216. 

    16. [16]

      A E Nelson, M Sun, A S M Junaid. J. Catal., 2006, 241(1): 180~188.

    17. [17]

      T Kabe, W Qian, A Ishihara. J. Phys. Chem., 1994, 98: 912~916.

    18. [18]

      M Jian, R Prins. Catal. Lett., 1998, 50: 9~13. 

    19. [19]

      J Bai, X Li, A J Wang et al. J. Catal., 2012, 287:161~169. 

    20. [20]

      J Bai, X Li, A J Wang et al. J.Catal., 2013, 300: 197~200.

    21. [21]

       

    22. [22]

      L Yang, X Li, A J Wang et al. J. Catal., 2014, 317: 144~152. 

    23. [23]

       

    24. [24]

      M Hussain, S K Song, S K Ihm. Fuel, 2013, 106: 787~792. 

    25. [25]

       

    26. [26]

       

    27. [27]

       

    28. [28]

      Q Wei, Y Li, T Zhang et al. Energy Fuels, 2014, 28(12): 7343~7351.

    29. [29]

      H L Yin, X L Liu, Y Y Yao et al. J. Porous. Mater., 2015, 22: 29~36.

    30. [30]

      C O Castillo-Araiza, G Chávez, A Dutta et al. Fuel Proc. Technol., 2015, 132: 164~172. 

    31. [31]

      S Zhang, L Song, X Wu et al. Vacuum, 2014, 108(10): 45~48.

    32. [32]

      J N Wang, Y C Fu, H Chen et al. Chem. Eng. J., 2015, 275: 89~101.

    33. [33]

      H Song, M Dai, Y T Guo et al. Fuel. Proc. Technol., 2012, 96: 228~236. 

    34. [34]

       

    35. [35]

       

    36. [36]

       

    37. [37]

      F Richard, T Boita, G Pérot. Appl. Catal. A, 2007, 320: 69~79. 

    38. [38]

       

    39. [39]

      F X Sun, W C Wu, Z L Wu et al. J. Catal., 2004, 228(2): 298~310. 

    40. [40]

      J A Rodriguez, J Y Kim, J C Hanson et al. J. Phys. Chem. B, 2003, 107(26): 6276~6285.

    41. [41]

      C Stinner, R Prins, T Weber. Appl. Catal. A, 2007, 328(1): 58~67.

    42. [42]

      I I Abu, K J Smith. Appl. Catal. A, 2007, 328(1): 58~67.

    43. [43]

      I I Abu, K J Smith. J. Catal., 2006, 241(2): 356~366.

    44. [44]

      I I Abu, K J Smith. Catal. Today, 2007, 125(3~4): 248~255.

    45. [45]

      J Ramirez, G Macias, L Cedeno et al. Catal. Today, 2004, 98(1~2): 19~30. 

    46. [46]

      P F Zhao, S F Ji, N Wei et al. Chin. J. Inorg. Chem., 2010, 26(12):2273~2279. 

    47. [47]

      C Q Li, M L Deng, H Wang et al. J. Fuel. Chem. Technol., 2012, 40(4): 501~506. 

    48. [48]

      P F Zhao, S F Ji, N Wei et al. Acta Phys-Chim. Sin., 2011, 27(7): 1737~1742. 

    49. [49]

      P Y Wu, Q Y Li, L Lan et al. Chin. J. Chem. Eng., 2014, 22: 903~908. 

    50. [50]

      Q Y Li, P Y Wu, L Lan et al. Catal. Today, 2013, 216:38~43. 

    51. [51]

      X Li, Z C Sun, A J Wang et al. Appl. Catal. A, 2012, 417~418: 19~25. 

    52. [52]

       

    53. [53]

      Z Sun, X Li, A Wang et al. Top. Catal., 2012, 55(14~15):1010~1021.

    54. [54]

      H Song, J Wang, Z D Wang et al. J. Catal., 2014, 311:257~265.

    55. [55]

       

    56. [56]

       

    57. [57]

      Q Y Li, P Y Wu, L Lan et al. Appl. Petrochem. Res., 2013, 4(2): 209~216. 

    58. [58]

  • 加载中
    1. [1]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    2. [2]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    3. [3]

      Jianqiao ZHANGYang LIUYan HEYaling ZHOUFan YANGShihui CHENGBin XIAZhong WANGShijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444

    4. [4]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    5. [5]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    6. [6]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    7. [7]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    8. [8]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    9. [9]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    10. [10]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    11. [11]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    12. [12]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    13. [13]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    14. [14]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

    15. [15]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    16. [16]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    17. [17]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    18. [18]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    19. [19]

      Weilai YuChuanbiao Bie . Unveiling S-Scheme Charge Transfer Mechanism. Acta Physico-Chimica Sinica, 2024, 40(4): 2307022-0. doi: 10.3866/PKU.WHXB202307022

    20. [20]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

Metrics
  • PDF Downloads(4)
  • Abstract views(1335)
  • HTML views(82)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return